
Installation

Installation
Download your preferred version from the Itch.io download page or use GitHub for older releases.

Windows
Two versions of GB Studio are available for Windows. The Squirrel Installer version just requires you to unzip, double click and

then wait a few seconds while the application installs to your C:\ drive. Once installed a shortcut will be added to your desktop

automatically and the application will start. The application will be installed to %LocalAppData%\gb_studio , if you need to

install to a different location use the Manual version.

The Manual version is a zip containing the application files, you can unzip this to any location. Once unzipped double click gb-

studio.exe to start.

macOS
For macOS unzip the downloaded file and move GB Studio.app to your Applications folder. Double click to start.

If you're having trouble building or running your game you may also need to install Apple's Command Line Tools by opening

Applications/Terminal.app and entering the following command.

Ubuntu / Debian-based Linux
For Debian-based Linux distros, download the .deb version and run the following commands (Tested on Ubuntu 18.10)

If you have issues with graphical glitches appearing on Ubuntu try running GB Studio using the following command.

Fedora / RPM-based Linux
For RPM-based Linux distros, download the .rpm version and run the following commands (Tested on Fedora 29)

xcode-select --install

> sudo apt-get update
> sudo apt-get install build-essential
> sudo dpkg -i gb-studio_1.0.0_amd64.deb
> gb-studio

> gb-studio --disable-gpu

> sudo yum install libXScrnSaver make lsb
> sudo rpm --ignoreos -i gb-studio-1.0.0.x86_64.rpm
> gb-studio

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://www.gbstudio.dev/
https://chrismaltby.itch.io/gb-studio
https://github.com/chrismaltby/gb-studio/releases


Getting Started

Getting Started
When you first open GB Studio you will see the New Project window.

TIP

It's recommended to start by using the Sample Project template as it contains examples of lots of the functionality that GB

Studio provides.

If you have an existing project you can open it from here by clicking Open and navigating to the .gbsproj file.

New Project
Give your project a name to get started (don't worry, you can change this later) and choose a project template. If you're new to GB

Studio then I would recommend using the Sample Project template which contains a few example scenes and scripts already set

up so you can get a small idea of what's possible. Click Create Project and you'll be taken to the Project Editor.

https://www.gbstudio.dev/


As soon as you see this screen you can click the Play button in the top right which will build and run the project. After playing the

sample project you can try clicking around the editor to see how the project is set up. Select one of the people or signposts and

edit the their dialogue using the sidebar on the right then try running the project again, you've just made your very own version of

the game! Don't worry if you break anything, you can always make a new project with the sample template later.



Getting Started Keyboard Shortcuts

Keyboard Shortcuts

Play Window
When playing your game inside GB Studio use the following keyboard controls:

Up - Up Arrow / W

Down - Down Arrow / S

Left - Left Arrow / A

Right - Right Arrow / D

A - Alt / Z / J

B - Ctrl / K / X

Start - Enter

Select - Shift

These controls can be modified at any time by going to the Settings View under the Controls section.

You can also control the Play Window using a supported gamepad. If your web browser has gamepad support you can also use it

when running a web build.

Navigating The Menus
Much of the functionality of GB Studio is accessible through the menu bar and many of the menu items contain keyboard shortcut

labels. Try clicking around on the menus to discover all of the shortcuts but the following are a few you should find useful:

Save Project - Ctrl/Cmd + S

Open Project - Ctrl/Cmd + O

Switch View Mode - Ctrl/Cmd + 1-8

Run Game - Ctrl/Cmd + B

Export ROM file - Ctrl/Cmd + Shift + B

Game World
While editing the game world you can use the following keys to quickly manipulate your scenes.

Select Mode - V

Add Actor - A

Add Trigger - T

Add Scene - S

Eraser Mode - E

Collisions Mode - C

Set Player Start Position - P (while hovering over desired location)

Pan View - Hold Space (while clicking and dragging on Game World)

https://www.gbstudio.dev/


Drawing Mode
Drawing mode is automatically enabled in the Collision tool and the Colorize tool.

Draw - Click on scene

Draw line from last point - Click to set first point, hold Shift , click to set next point

Lock brush to axis - Hold Shift + Hold Click

8px Brush - 8

16px Brush - 9

Fill - 0

Hide Triggers/Actors - -

Collision Types
These are only available when using the Collision tool.

Each tile can hold a maximum of 1 ladder and 3 collision sides. Ladders will not replace existing collision when placed on top of

other colliders.

Select multiple collision types - Shift + Click

Erase collision tile - Click on a collision tile

Solid - 1

Collision Top - 2

Collision Bottom - 3

Collision Left - 4

Collision Right - 5

Ladder (Platformer only) - 6

Colorize Palettes
These are only available when using the Colorize tool.

Change Brush Palette - 1-6

Change Palettes - Hold click on existing palette

Music Editor
These are only available when using the Music Editor.

Save Song - Ctrl/Cmd + S

Play/Pause - Space

Play from position - Alt/Option + Space

Switch to Tracker/Piano Roll - `

Tracker

Navigate grid - Arrow Keys

Next Column - Tab

Previous Column - Shift + Tab



Cell Selection - Shift + Arrow Keys or Click to set first cell, hold Shift , click to set next cell

Select Column - Ctrl/Cmd + A

Select Pattern - Ctrl/Cmd + A , Ctrl/Cmd + A

Copy Selection - Ctrl/Cmd + C

Paste Selection - Ctrl/Cmd + V

Delete Selection - Backspace/Delete

Transpose Selection (small step up) - Ctrl + = or Ctrl + Scroll wheel

Transpose Selection (small step down) - Ctrl + -

Transpose Selection (big step up) - Ctrl + Shift + = or Ctrl + Shift + Q

Transpose Selection (big step down) - Ctrl + Shift + - or Ctrl + Shift + A

Piano roll

Change Instrument - 1-9

Quick Select - Shift + drag and drop mouse

Duplicate Selection - Alt/Option (while moving selected notes)

Select Channel - Ctrl/Cmd + A

Copy Selection - Ctrl/Cmd + C

Paste Selection - Ctrl/Cmd + V

Paste and Replace Channel - Ctrl/Cmd + Shift + V

Delete Selection - Backspace/Delete



Getting Started Saving and Loading

Saving and Loading

Saving
To save your project select File > Save from the menu or press Ctrl/Cmd + S. If you try to close a project with unsaved

changes GB Studio will warn you giving you a chance to save your project first. On macOS any unsaved changes in your project

will be represented by a dot in the window close button.

Loading
To load your project again, either use the Open button on the New Project window or select File > Open from the menu and

navigate to your project's folder then select the .gbsproj file.

You can also return to the Recent_Projects window by selecting File > Switch Project from the menu.

Version Control
The project folder layout and .gbsproj file is designed to work well with version control systems such as Git with each change

by the application taking place on a new line in the data file allowing history to be tracked easily. If you want to use version control

on your project you can just create the repository at the project root folder.

It's recommended to ignore the build folder from your repository using a .gitignore file or similar.

Backups
Each time you save your project the previous version is saved to your project folder with the extension .gbsproj.bak . If you

ever wish to roll back to the previous version in your project you can rename this file to have the extension .gbsproj and open

this file instead.

https://www.gbstudio.dev/
https://git-scm.com/


Project Editor

Project Editor
The default view for the Project Editor as shown below is the Game World. This is where you can create your game by combining

scenes, adding actors and triggers then building scripting events to add interactions.

Use the Editor Tools to switch between Select, Add, Erase, Collision, and Color Drawing modes.

By default, your project's properties are shown in the Editor Sidebar on the right. Here you can set the project name and choose

the starting scene. This project view is also where initial values for the Player actor are set. See the page on The Player for more

information on the Player.

To look at project properties again from the Editor Sidebar, click on any empty space between scenes.

Editor Tools
Select tool: Clicking any scenes, actors, or triggers will update the Editor Sidebar to show the properties and scripts for the item

you selected. You can switch back to the Project's properties by clicking outside of a scene.

Add tool: You are given the choice of adding a new Actor, Trigger or Scene. After clicking any of the 3 options, your mouse

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/project-editor/player


cursor will be loaded with a new item. You can place the new item by clicking inside the Project Editor, and cancel the action by

pressing Escape or selecting another tool from Editor Tools.

Erase tool: All collisions, actors, and triggers will be removed when clicked. Scenes are not affected by Erase mode. To delete a

scene, use Select mode and click the scene's background. In the Editor Sidebar click the down arrow at the top to reveal the

"Delete Scene" button. All erase actions can be undone by pressing Control Z.

Collision tool: Allows you to add collisions to any type of scene using GB Studio's Drawing mode.

Colorize tool: Allows each tile to be given a different palette to use in place of GB Studio's default palette. The Colorize tool also

uses GB Studio's Drawing mode. The palettes used here are determined in the Palette tab in the Project Editor.

See the documentation on Keyboard Shortcuts for editor tool shortcuts.

Project Views
Using the Project View Button you can switch between different views of your project and its assets.

Game World: Create your game by combining scenes, actors and triggers.

Sprites: Edit your sprites and create animations.

Backgrounds: Preview your background assets.

Music: Preview and edit (hUGEDriver only) your music files.

Palettes: Edit your palettes for GBC games.

Dialogue Review: Preview and edit all the text in your game.

Build and Run: View logs of progress while building your game.

Settings: Change your project's settings such as default sprites, color palettes and keyboard controls.

See the documentation on Assets for more information on how to add new assets.

https://www.gbstudio.dev/docs/getting-started/keyboard-shortcuts
https://www.gbstudio.dev/docs/assets


Project Editor Scenes

Scenes
A scene is a single screen of your game, it can contain multiple actors and triggers. A game is typically made-up of many scenes

connected together with triggers using the Change Scene event.

Adding a Scene
Click the + button in the Editor Tools and select Scene from the menu. Click on any empty space in the Project Viewport to place

the new scene.

You can use the Editor Sidebar to give your scene a name and a background from your project's assets. See the documentation

for Backgrounds for more information on adding background images.

Scene Properties
• Name - Names your scene. Useful for locating your scene with the search bar.

• Type - Lets you choose from the list of game modes such as Top Down 2D or Platformer.

• Background - Lets you choose a background from the assets/backgrounds folder.

• Background Palettes (Color Mode Only) - The eight palettes that will be used when colorizing the scene.

• Sprite Palettes (Color Mode Only) - The eight palettes that will be used for sprites in your scene.

• Player Sprite Sheet - Used to set a custom player sprite for this scene. By default the scene will use the default player

sprite for the selected scene type.

Parallax Mode
Clicking the Parallax Toggle Button to the right of the Background Selector allows you to turn on parallax mode for the scene.

When parallax mode is enabled you can split the background into up to three slices which can be modified to scroll at different

speeds as the camera moves in game.

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/project-editor/actors
https://www.gbstudio.dev/docs/project-editor/triggers
https://www.gbstudio.dev/docs/assets/backgrounds


Scripting
Scenes can contain an On Init script that will be called as soon as the scene is loaded in game. You can use this to do things like

playing music as the scene loads, configuring events to happen on button presses, initialise actors based on the values of

variables, and much more.

You can also define scripts to call when the player collides with Actors that have a Collision Group set by clicking the On Hit tab

and choose a collision group.

To start building a script, select a scene, click the script type you want to edit and click the Add Event button in the Editor Sidebar

to open the event menu. Select an event to add it to the script.

For more information see the documentation for Scripting.

Adding Collision to a Scene
Select the Collision Tool from the Editor Tools. There are 6 collision types that can be added.

• Solid Stops colliding actors from entering the tile on any side.

• Top/Bottom/Left/Right Stops colliding actors from entering the tile from that specific side. This is useful for one-way

collision and semi-solid platforms.

• Ladder (Platformer only) Allows moving up and down in Platformer scenes.

Each tile can hold a maximum of 1 ladder and 3 collision sides. Adding 4 collision sides will replace the sides with a single solid

block. Ladders will not replace existing collision when placed on top of another collision.

Colorizing a Scene
Select the Colorizer Tool from the Editor Tools. There are 8 palettes types that can be added to a scene with Color Mode enabled.

Palettes can be adjusted in Settings. Note that the 8th palette in a scene will also be used for Dialogue Windows and menus.

The palettes used in the Colorizer Tool can be swapped out for existing palettes (such as the UI palette) by long-clicking on a

palette.

For more information about the drawing mode used for the Colorize Tool and the Collision Tool, see Keyboard Shortcuts.

https://www.gbstudio.dev/docs/scripting
https://www.gbstudio.dev/docs/getting-started/keyboard-shortcuts


Scene Limits
There are several limits that GB Studio has put in place to keep game performance consistent, and to minimize visual issues.

Each scene can have a maxmimum of 20 actors, and 30 triggers, and between 96 and 64 sprite tiles depending on the complexity

of the background used. You can check this information by selecting a scene and looking for the gray bar under your scene that

reads: A: 0/20 S: 0/96 T: 0/30 . The letters on this bar represent the following:

• A: represents the number of actors that the scene is using.

• S: represents the number of unique sprite tiles that each actor is using in their sprite sheet.

• T: represents the number of triggers that the scene is using.

Actor Limits

Each scene can have a maximum of 20 actors. Ideally, there should never be more than 10 actors within a 20 x 18 tile boundary,

equivalent to 160px x 144px . Clustering more than 10 actors together in a scene will cause some actors to become invisible in-

game. GB Studio will warn you if it thinks this will be the case for a scene:

You can address this message by moving or deleting actors so no more than 10 will be seen in a 20 x 18 tile boundary. You can

use the Eraser Tool to delete actors. Actors will still become invisible if more than 10 actors move into the screenspace after the

scene starts.

Sprite Tile Limits

The exact number of sprite tiles available in a scene depends on the amount of tiles used in the selected background image as

some memory is shared between sprite and background tiles. If the selected background uses less than 128 unique tiles, you can

use 96 sprite tiles, each background tile above 128 takes away from sprite tiles available until a minimum of 64 tiles are available.

Trigger Limits

Each scene can have a maximum of 30 triggers. You can use the Eraser Tool to delete triggers.



Project Editor The Player

The Player

Start Position
The player starting position is indicated in the game world view by the icon.

Clicking in the background between scenes switches the sidebar back to the Project Editor where you'll have options to set the

player starting scene, position, and direction.

You can also change the player start position by dragging the icon and can even drag between scenes.

Default Sprite Sheet
Each scene type (Top Down 2D, Platformer etc.) can have a different default player sprite sheet that will be used in any scenes of

this type unless you override this for the specific scene.

You can edit the default player sprite sheets for each scene type from the Settings View.

Scripting
Most actor script events can also be applied to the player. In addition you can use Set Player Sprite Sheet event to change the

graphics used for the player character mid-game. Changing the sprite sheet will only affect the current scene unless you choose

to Replace Default For Scene Type which will causes any other scenes of the same type to also use this player sprite (unless and

override was provided).

When switching between scenes the player will always become visible at the scene start location regardless of previous visibility

options. if you want the player to be hidden on a scene e.g when showing a title screen or cutscene add a Hide Actor event to the

scene's On Init script.

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/settings


Project Editor Actors

Actors
Actors are the characters and objects in your scene that you can interact with.

Adding an Actor
To add an actor to a scene click the + button in the Editor Tools and select Actor from the menu (alternatively press the A key),

then click on the scene and position where you wish to place the actor.

Actor Properties
• Name - Names your actor. Giving your actors a name helps organize them in your project. An actor's name will be visible in

any drop-down menu that asks you to pick an actor, such as the Actor: Hide event.

• Position - Sets the X and Y position where the actor will be positioned in a scene. You can also change this by dragging the

actor around the the Game World.

• Pin to Screen - Using the Pin Button next to the actor position you can choose to pin the actor to the screen which cause it

to not move as the game screen scrolls.

• Sprite Sheet - Choose which sprite graphics should be used to display the actor.

• Movement Speed - Choose how fast the actor should move when scripting events are used.

• Animation Speed - Choose how fast the actor animations should play.

• Collision Group - Choose if scripts should play automatically when colliding with this actor.

Pin to Screen

When an actor is pinned, the actor will not move without a script, and does not create collisions with other actors in your scene.

Enabling this property will temporarily change your scene to be blacked-out, with a 160px x 144px boundary in the top-left

corner showing part of your original scene. Use your mouse to drag the actor to where you want it to be pinned to the screen.

Select a different actor, the scene, or the project to return the blacked-out view of your scene to normal.

https://www.gbstudio.dev/


Collision Groups

Actors can be given a collision group in the Editor Sidebar. When enabled, the option to run scripts based on collisions will appear

in the Editor Sidebar. To learn more about On Hit scripts, see the documentation for Scripting.

Scripting
Actors can contain multiple scripts that will be called a different points in your game.

• On Interact: This is called if the player stands in front of this actor and presses the Interact button.

• On Hit: (only if collision group is set) This is called when this actor collides with either the player or a projectile with a

specified collision group

• On Init: Called as soon as the scene is loaded in game.

• On Update: Repeatedly called while the actor is on screen, and once the script finishes it will repeat. You can use this to

create movement scripts

To start building a script, select an actor, click the script type you want to edit and click the Add Event button in the Editor Sidebar

to open the event menu. Select an event to add it to the script.

For more information see the documentation for Scripting.

Limits
There are limits to how actors and their sprites can be used in GB Studio. These limits are to make sure your game appears as

intended, as well as to keep your actor logic running smoothly. The exact limits depend on the complexity of the background

image used in your scene, see Scenes for more information.

https://www.gbstudio.dev/docs/scripting
https://www.gbstudio.dev/docs/scripting


Project Editor Triggers

Triggers
Triggers are areas in a scene that, when the player walks over them, will cause a script to play. They are useful for creating

doorways between scenes and to start cutscenes when the player moves to a specific position.

Adding a Trigger
To add a trigger to a scene click the + button button in the Editor Tools and select Trigger from the menu (alternatively press the T

key), then click and drag across the scene where you wish to place the trigger setting the desired width and height.

The Editor Sidebar will switch to show the trigger settings where you can give the trigger a name for easier navigation later,

reposition and scale the trigger and create the script that will play when the player walks on the trigger.

Scripting
When the trigger is selected click the Add Event button in the Editor Sidebar to open the event menu and start building the script.

For more information see the documentation for Scripting.

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/scripting


Assets

Assets
When your project was created an assets folder was also made within the project containing a number of subfolders for each

asset type in your game.

GBStudio doesn't currently contain any ability to edit the graphics in your game directly, you instead can use your favourite

existing applications and save files into these folders where they will instantly appear ready to use in your project. If you edit a

sprite or background PNG file and save using an external image editor the change will be seen in your Project Window as soon as

you switch back to it.

While you can create graphics in any application that can output PNG files it is recommended to use Aseprite or Photoshop to

create your sprites and UI elements then to use Tiled Map Editor to create your backgrounds. Each image asset type has a

different set of requirements detailed over the new few sections of this documentation. You can select the default application to

open when clicking asset edit buttons in the GB Studio Preferences window.

For music you can either create UGE files or MOD files depending on the Music Driver you choose in the Settings View

(hUGEDriver is recommended).

• UGE files can be edited directly within the GB Studio Music Editor.

• MOD files can be edited with OpenMPT or MilkyTracker.

Community Assets
If you're looking for a collection of free assets, ready to be used in GB Studio there is a community run repository on Github

available at GB Studio Community Assets.

https://www.gbstudio.dev/
https://www.aseprite.org/
https://www.mapeditor.org/
https://www.gbstudio.dev/docs/assets/music
https://openmpt.org/
https://milkytracker.titandemo.org/
https://github.com/DeerTears/GB-Studio-Community-Assets


Assets Sprites

Sprites
Sprites are the graphics used by playable or interactive characters in your scenes. Add sprites to your game by including .png

files in your project's assets/sprites folder.

Because there are limits to how many sprites tiles can be loaded into a single scene, be sure to check your the frame limits across

your scenes when adding new sprites. See Scene Limits for more information.

Simple Sprites
A simple sprite has one or more 16px x 16px frames laid out horizontally in an image file. A sprite with a single frame will be

16px x 16px while a sprite with three frames will be 48px x 16px .

Static sprites

For sprites that only need a single frame (e.g. static items such as signposts) create your .png as a 16px x 16px image

containing just the one frame required.

Animated sprites

If you want to have sprites that play short animations, you can make a .png with between 2 frames at 32px x 16px and 25

frames at 400px x 16px . Using these sprites on an actor will let you select which frame you want to display by default, on top of

playing the full animation at a specified speed.

Actor

To make a static sprite that changes based on the actor's direction, create a 48px x 16px .png containing the three frames:

One forward facing, one upwards facing and one right facing. The left facing sprite is automatically generated by flipping the right

facing frame horizontally.

Animated Actor

To make sprites that have animated movement, or that can be used as a player character, create a 96px x 16px .png

containing six frames: Two forward facing, two upwards facing and two right facing.

Sprite Editor
When you want to progress to making more complex sprites you can use the Sprite Editor by clicking the Project View Button and

selecting Sprites.

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/project-editor/scenes#scene-limits


Composition of a Sprite

A sprite consists of:

• Multiple Animation States, by default only a single animation state is created for a sprite, you can make a new one by

clicking the + button in the Animation Navigator.

◦ Each animation state consists of multiple animation frames, viewable in the Frames Navigator, click the + button to

create a new frame, and click a frame to view it in the Frame Canvas for editing.

• A Tile Palette, this is the .png file from your assets folder. Click into the tiles palette to select a tile, you can then draw it by

clicking into the Frame Canvas.

• A Canvas Size this is the width and height of your Frame Canvas, set this from the Editor Sidebar to the size you want your

sprite to be.

• A Collision Bounding Box this is the width, height and position of an invisible box used for collision detection within the game

engine, set this to fit as closely as possible around the collidable area of your sprite.

Animation Settings

In the Editor Sidebar you can choose from a list of sprite types, setting this will determine the number of animations available for

your sprite and what names they have in the Animation Navigator. For example while you can use any sprite type for a Platformer



scene player, it's recommended to set the type to be Platformer Player as this will allow you to configure the Jump and

Climbing animations.

Some sprite types also allow you to "Flip 'Right' to Create 'Left' Facing Frames", this lets you create both the left and right sprite

animations from a single animation that gets flipped automatically saving you from creating these animations manually.

Animation States

Using the + button in the Animation Navigator you can create new Animation States. These let you create custom animations

that can be triggered from scripts.

Once you've created a new Animation State you can name it by typing in the State Name input in the Editor Sidebar, or by

selecting an existing sprite name.

The list of sprite names is global for your project and it's recommended to keep the number of unique names low. Each one you

add increases the amount of memory required for all sprites in your game. For example, rather than having two unique sprites

with states Explode and Squash , consider making a single state used by both called Destroy .

To switch which animation state an actor should use in your game, you can use a Set Actor Animation State event. This

allows you to choose an actor and which animation state you should switch to. Make sure that the spritesheet you're using has

animations defined for the state you've chosen in the event!

Frame Canvas

Once you have selected an Animation and Frame to edit you can use the Tile Palette and Frame Canvas to create an animation

frame.

Start by clicking on the tile you wish to use in the Tile Palette.

• You can select multiple tiles by clicking and dragging in the Tile Palette

• By default the Tile Palette snaps to an 8px grid, this is to increase the chance of tile reuse as each unique tile you use in

your sprite takes away from limits when used in scenes. If you know what you're doing and want to disable this grid you can

turn on Precision Mode by clicking the button in the top right of the Tile Palette or by holding Alt while making your

selection.

Once you have a tile selection click into the Frame Canvas to draw the tiles into your frame. You can then move tiles around in the

Frame Canvas by dragging them and if you have tile selection you can move frames to the front or back and flip them horizontally

or vertically by using the Editor Sidebar.

Onion Skin

Using the Onion Skin button you can toggle the Onion Skin feature. This displays a semi-transparent version of the previous

frame behind the Frame Canvas allowing you to more easily make decisions about the flow of the animation.

Deleting Tiles and Frames

To delete a tile or frame, select it in either the Frame Canvas or Frames Navigator and press Backspace on your keyboard.

Alternatively to can make your selection then click the dropdown button arrow in the top right of the Editor Sidebar to access a

menu where deleting is available.

Image Requirements
Sprite .png s must only contain the following four colors:



#071821

#86c06c

#e0f8cf

#65ff00

Download the GB Studio Palette Swatches for:

Adobe Photoshop

Aseprite

The color #65ff00 is used to represent a transparent background in game and will be invisible in-game and in the World Editor.

Colors that are not one of the above hex codes will be matched to the nearest color. Unlike backgrounds, the color #306850 can

not be used in sprites.

https://www.gbstudio.dev/assets/swatches/gb-studio-photoshop.aco
https://www.gbstudio.dev/assets/swatches/gb-studio-aseprite.aseprite


Assets Backgrounds

Backgrounds
Each of your scenes requires a background image that defines how that scene should look. You can add backgrounds to your

game by including PNG files in your project's assets/backgrounds folder.

Color Requirements
Background PNGs must only contain the following four colors:

#071821

#306850

#86c06c

#e0f8cf

Download the GB Studio Palette Swatches for:

Adobe Photoshop

Aseprite

Colors that are not one of the above hex codes will be matched to the nearest color. Unlike sprites, the color #65ff00 can not be

used in backgrounds.

Size Requirements
• Backgrounds are divided into 8px x 8px tilesets so the total image size must be a multiple of 8px in both width and

height.

• A background has a minimum size of 160px x 144px (the GB screen size)

• Both the width and height of a background must be less than or equal to 2040px .

• The width of the image multiplied by the height must be less than or equal to 1,048,320 . For example an image with the

width 2016px will have a max height of 520px (because 2016 * 520 = 1048320 )

Tile Requirements
In most scene types a background image can contain no more than 192 unique 8px x 8px tiles at once due to memory limits.

This means that even using the smallest background size possible you must repeat about half of your tiles. Where possible repeat

tiles between images as they will be grouped together saving on total game size. It is recommended to use a tile map editor such

as Tiled to ensure your backgrounds conform to the pixel grid.

The exception to this is scenes with their Scene Type set as Logo, these scenes can use a 160px x 144px sized image with no

limits on unique tiles but note that in Logo scenes you are unable to use Actors or display a Player.

https://www.gbstudio.dev/
https://www.gbstudio.dev/assets/swatches/gb-studio-photoshop.aco
https://www.gbstudio.dev/assets/swatches/gb-studio-aseprite.aseprite
https://www.mapeditor.org/


Assets Music

Music
Music can be played in your game using the Play Music Track event in your Actor, Trigger, or Scene scripts.

You can add music to your game by including .uge or .mod files in your project's assets/music folder.

A project can only support one type of music files, this can be configured on the Settings View by selecting either MOD or UGE as

the Music Format.

.uge files can be created and edited with the Music Editor.

See the Music Editor documentation for more information.

.mod files are created and edited using an external Tracker software. You can select the default application to open when

clicking asset edit buttons in the GB Studio Preferences window.

See the MOD files documentation for more information.

My Track 1

Play Music Track

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/assets/music/music-huge
https://www.gbstudio.dev/docs/assets/music/music-gbt


Assets Music Music Editor

Music Editor
If you have your Music Format in the Settings View set to UGE (hUGEDriver) (the default in GB Studio 3 and above) you can

add music to your game by including .uge files in your project's assets/music folder.

Those files can be edited using the Music Editor by clicking the Project View Button and selecting Music. The editor also allows to

create new songs by pressing the + button on top of the Song list.

.uge files can also be edited using hUGETracker

Getting Started
The Music Editor is divided in three parts:

• Navigator: Contains the list of songs and instruments for the selected song

• Song Composer: The music editor itself. Has two views: Piano Roll and Tracker. The first icon in the toolbar allows to

change views.

• Editor Sidebar: Allows to edit the song title, artist name and tempo and also shows the instrument or effect editor when

selected.

Structure of a Song

A song consists of:

• Four Channels: Duty 1, Duty 2, Wave and Noise.

◦ Each channel is better suited for a different type of sound (for example: the Noise channel is usually fit for drum

rythyms).

◦ Each channel has its own set of 15 Instruments. Duty 1 and Duty 2 share the same set of instruments.

• Multiple Patterns, a unique group of notes in each of the four channels.

◦ Each pattern contains a sequence of up to 64 notes per channel, and each note is formed by a pitch ranging from

C-3 to B-8 , an instrument and an effect.

◦ Patterns can be repeated or arranged to form the full song using the Pattern Editor.

• A Tempo, how many ticks (64 per second) have to elapse before a row is complete. The greater the number of ticks, the

slower the song is.

Piano Roll
In Piano Roll mode you use the mouse to add notes to the pattern. It reads like a music sheet, the time is represented in the

horizontal axis (columns) while the note pitch is represented on the vertical axis (rows).

https://www.gbstudio.dev/
https://nickfa.ro/index.php/HUGETracker


You can only add notes to one channel at a time, selectable on the top right toolbar. The channels can be muted with the speaker

icon for each channel. The channels that aren't selected can be previewed by clicking the eye icon.

Using the Piano Roll

To input a note, select the pen tool in the toolbar and click on a cell. The note will use the selected instrument in the toolbar.

To remove a note, select the eraser tool in the toolbar and click on an existing note. You can also right click on an existing note to

remove it.

To select a note, select the selector tool or press Shift . Once selected a group of notes and drag and drop them anywhere else

in the grid.

The effect bar, at the bottom of the piano grid, allows to add an effect to a given note using the effect editor in the right pange.

The song can be previewed at any time by pressing the play button.

To set the playback starting position, click the area above the piano roll, where the playback head is shown.

The song can be saved by pressing the save button or Ctrl/Cmd + S.

Tracker
In Tracker mode you use the keyboard to add notes to the pattern. The song advances from top to bottom, with each row

representing a position of the song.



There's one column for each channel, and each column is divided in 3 fields: Pitch (or Note), Instrument and Effect.

Rows can be empty, or can be partially filled (with just an effect, for example).

Using the Tracker

The song grid can be navigated with the cursor keys.

There's two keyboard layouts to input the values in the note column. The layout can be selected in the GB Studio Preferences

window.

Linear layout

C-5 01 240
--- -- ---
|   |  |
|   |  +------ Effect column (Volume changes, arpeggios, panning, etc.)
|   +--------- Instrument
+------------- Note and octave (A C note in the 5th octave. The dash can be a #, which

signifies a sharp note e.g. C#, D#)



This is the layout used by trackers like OpenMPT and hUGETracker.

Each keyboard row (or "line") represents one octave on a piano. Keys from Q to / are used to input the values, starting with C

in the base octave (3 by default).

Piano layout

This is the layout used by trackers like MilkyTracker or FastTracker2.

The keyboard is split in two of groups of two rows of keys. On each group the top keys represent the black keys of a piano,

andthe bottom keys the white ones. Keys from 2 to / are used to input the values, starting with C in the base octave + 1 (4 by

default).

The base octave can be selected in the toolbar.

The numeric keys are used to input the value in the instrument column. A default instrument can be selected in the toolbar and be

used automatically when adding a new note.

The numeric keys, and keys A through F are used to input values in the effect column.

The song can be previewed at any time by pressing the play button.

To set the playback starting position, click the row number on the left side of the tracker grid.

The song can be saved by pressing the save button or Ctrl/Cmd + S.



Pattern Navigator

The dropdown menu on each cell allows you to select one of the existing patterns or assign an empty one to the current position.

The plus button allows you to add a new pattern to the song.

Note: any unused pattern will be removed from the song on save.

Instruments
Borrowing from the descriptions on the hUGETracker manual

Selecting an instrument in the left sidebar will open the instrument editor on the right sidebar.

Changes to the instrument can be previewed at any time by pressing the "Test Instrument (C5)" button, which will play the C5

note for a few seconds with the selected instrument.

Other than the instrument name, each instrument has its own set of fields that can be edited.

Duty Instruments

Length: When enabled, the note will be cut off immediately at a specific length. If not enabled the note will play until a new note

starts.

Initial Volume: Sets the starting volume for the envelope. If there's no sweep change set this will be the volume for the note.

Sweep Change: Defines how steep the volume change will be. The higher or lower the value, the quicker the note will fade in or

out.

Sweep Time: Selects the "sweep time" for the note to take. The greater the value, the slower the sweep.

Sweep Shift: Selects the direction and magnitude of sweep for the note to take per "tick" as specified by Sweep Time. Positive

values portamentos the note up, negative values portamentos it down.

Duty: Selects the timbre of note to play. Each one sounds different, and they are useful when you don't want both of the duty

channels to clash with one another.

Wave Instruments

Length: When enabled, the note will be cut off immediately at a specific length. If not enabled the note will play until a new note

starts.

Volume: Specifies at what volume a wave instrument shall play unless overridden by a volume effect command. There are only 3

possible values here, as the wave channel's volume interface is more limited than the other channels.

Waveform: Selects which waveform should play as part of this instrument. The selected waveform can be edited by drawing on

the waveform preview.

https://nickfa.ro/images/HUGETrackerManual.pdf


Noise Instruments

Length: When enabled, the note will be cut off immediately at a specific length. If not enabled the note will play until a new note

starts.

Initial Volume: Sets the starting volume for the envelope. If there's no sweep change set this will be the volume for the note.

Sweep Change: Defines how steep the volume change will be. The higher or lower the value, the quicker the note will fade in or

out.

7-bit counter: When checked, the instrument will sound more like a musical tone rather than noise.

Noise Macro: Like an arpeggio effect, set up to 8 pitch changes +-32 from the noise frequency, advancing every frame. Freat for

kick drums or fast sweeping noise. Must be shorter than your current song tempo.

Effects
Borrowing from the descriptions on the hUGETracker manual

Effect Name Description

0xy Arpeggio
On every tick, switch between the playing note, note + x , and note + y , where x and y are

values in semitones. Can be used to create "chords" or a strum effect.

1xx
Portamento

Up
Slide the pitch up by xx units every tick.

2xx
Portamento

Down
Slide the pitch down by xx units every tick.

3xx
Tone

Portamento

Slide the pitch towards the specified note value by xx units every tick. Stops when it reaches the

specified note value.

This effect cannot be used in a cell with an instrument value.

4xy Vibrato

Rapidly switch between the specified note value and note + y, at the rate of x , where y is a

value in units. This is similar to arpeggio, except you can control the frequency, and the amount is

specified in units rather than semitones.

5xx
Set Master

Volume

Sets the master volume control of the Gameboy for the left and right speakers. Use the effect

editor to create one of these effects. Note that a volume of zero is not completely silent.

6xx
Call

Routine
Call a user-defined routine. Routines can be created by using the Set Music Routine event.

https://nickfa.ro/images/HUGETrackerManual.pdf
https://www.gbstudio.dev/docs/scripting/script-glossary/music-sound-effects#set-music-routine


Effect Name Description

7xx Note Delay Wait xx ticks before playing the note in this cell.

8xx
Set

Panning

Sets which channels play on which speakers. Use the effect editor to create one of these effects.

Can also be used as a mute for a channel by setting it to output on neither left nor right.

9xx
Set Duty

Cycle

Select duty cycle for either the Duty 1 or Duty 2 channels. If this effect appears on the Noise or

Wave channels, it will affect the Duty 2 channel. Valid values for xx are 00, 40, 80, C0. Under the

hood, the xx value is loaded directly into Duty 1 or Duty 2's length register, so you could

theoretically achieve other effects than just duty cycle changing.

Axy
Volume

Slide

Slide the note's volume up by x units, and then down by y units.

This effect actually retriggers the note on each tick, which might not be noticeable for instruments

without length/envelope, but could potentially sound bad if those are present.

Recommended to use either instrument envelopes, or the C command instead if you can.

This effect does not work in the same cell as a note/instrument!

Bxx
Position

Jump
Jump to the start of pattern xx . If xx is 00 jump to the next pattern.

Cev Set Volume

Set the envelope e and volume v of the channel. Must be accompanied by a note and

instrument to work (except on the Wave channel).

Valid volumes range from 00-0F (00,04,08,0F for Wave channel).

Valid envelopes for Cev 00-F0, 0 use instrument, 8 no fade, 1-7 fade quieter, 9-F fade louder,

smaller values fade faster.

Dxx
Pattern

Break
Jump to the next pattern early, and start on row xx .

Exx Note Cut Cut the note short after xx ticks.

Fxx Set Speed
Set the number of ticks per row to xx . Can be used in an alternating fashion to create a swing

beat.

Keyboard Shortcuts
See Keyboard Shortcuts > Music Editor

https://www.gbstudio.dev/docs/getting-started/keyboard-shortcuts#music-editor


Assets Music MOD Music

MOD Music
If you have your Music Format in the Settings View set to MOD (GBT Player) (the default in GB Studio 2 and below) you will need

to provide music as .mod files.

Requirements
Add music to your game by including .mod files in your project's assets/music folder. GBT Player is a driver that takes .mod

files and converts them to instructions for the Gameboy. GBT Player interprets .mod files differently than the Amiga computers

that the .mod format was originally designed for, so every .mod file that GBT Player reads should be composed/arranged to be

used with GBT Player.

As an alternative to composing, there is a way to import .midi files to OpenMPT for playback in GBT Player. More information can

be found under Frequently Asked Questions. You can also browse the GB Studio Community Assets to find free, GBT-compatible

music under the MIT licence.

To compose GBT-compatible .mod files, you can use software such as OpenMPT (for Windows or Linux using Wine),

MilkyTracker (for Windows, Mac and Linux), ProTracker, and BassoonTracker (browser-based) to name a few. Any software

that loads and exports .mod files can write files that are compatible with GBT Player.

Resources
It is recomended you read through your tracker's documentation to learn about your tracker:

• OpenMPT's Documentation

• MilkyTracker's Documentation

• BassoonTracker's Documentation

Lastly, the GB Studio Discord also has a dedicated #music-help channel and a #tutorials channel in case you get stuck.

Getting Started
1. Create a blank GB Studio project, find the file assets/music/template.mod and open it with your tracker of choice.

◦ You must edit this file to get an accurate representation of the instruments you can use.

◦ MilkyTracker users should save this file as an .XM file. Saving a .mod file in MilkyTracker will corrupt it. Export your

song as a .mod file every time you want to test your song in-game.

2. Use the instrument list shown later in this document to pick the sounds you want. Changing the samples in your tracker will

not affect how they sound in-game.

When done, add your .mod files to the assets/music folder of your project. Test your song in-game often to keep track of

any audible in-game differences.

Here is a quick rundown of how a tracker works:

C-5 01 v64 ...
--- -- --- ---

https://www.gbstudio.dev/
https://github.com/AntonioND/gbt-player
https://www.gbstudio.dev/docs/music/#frequently-asked-questions
https://github.com/DeerTears/GB-Studio-Community-Assets
https://openmpt.org/
https://milkytracker.titandemo.org/
https://16-bits.org/pt.php
https://www.stef.be/bassoontracker/
https://wiki.openmpt.org/Tutorial:_Getting_Started
https://milkytracker.org/docs/MilkyTracker.html#shortcuts
https://www.stef.be/bassoontracker/docs/#about
https://discord.gg/v9xAJCJ


This is what comprises of a channel's row. Rows can be empty, or can only be partially filled (with just an effect, for example).

There's 4 of those columns in total.

Any part in this documentation where you see data that starts with ModPlug Tracker MOD , you can copy that entire block into

OpenMPT as-is. Any data copied from OpenMPT looks like that when you paste it into any text application.

GBT Player's Channel Limitations
.MOD files need to use 4 channels. Loading a copy of template.mod before composing will ensure this is set-up correctly.

Channel # Sound type Note Range1 Instruments Effects

Channel 1 & 2 Pulse C3 to B8 1-4 0, C, E8, EC, B, D, F

Channel 3 Waveform C3 to B8 8-15 0, C, E8, EC 2

Channel 4 Noise Only C5 16-31 C, E8, EC, B, D, F

1 This range is for One-Indexed Trackers (C1 is the lowest-possible note). This is comparable to OpenMPT in default settings.

Trackers that are Zero-Indexed by default (C0 is the lowest-possible note) should interpret these Note Ranges a full octave down.

This is comparable to MilkyTracker in default settings.

Using default settings on OpenMPT and MilkyTracker, C3 to B8 in OpenMPT sounds the same as C2 to B7 in MilkyTracker.

2 Effects B, D, and F can be also used on Channel 3 if the same row isn't being used to set a note/instrument.

Volume Limitations
Currently, volume can only be adjusted by using the Cxx effect for each channel.

The Gameboy has 16 unique volume settings for Channels 1, 2 and 4. GBT Player will floor (round-down) the values in a Cxx

volume effect to multiples of 4.

Unique Volume Settings for Channels 1, 2 and 4:

00, 04, 08, 0C, 10, 14, 18, 1C, 20, 24, 28, 2C, 30, 34, 38, 3C

Any number that's not a multiple of 4 will be rounded-down to one of the above numbers.

Example: Entering C01 , C02 and C03 will sound the same as entering C00 .

Example: Entering C40 will sound the same as entering C3C .

Channel 3 is the exception to this with only 4 unique volume settings.

Unique Volume Settings for Channel 3:

00, 10, 20, 40

GBT Player will round Cxx effects on Channel 3 to the nearest number listed above.



Example: Entering C30 will round the volume up to C40 .

Volume Persistence
In most trackers, if a note is played without a volume command, the note's volume is reset to the maximum. When a .mod file is

converted by GBT Player, notes without a volume effect will play at the same volume as the previous Cxx effect that the channel

read. For example, take this scenario:

In the tracker, the E-5 note will resume at full volume after the C00 effect.

In-game, you will not hear the E-5 note. This is because the C00 persists until another Cxx effect is set. To make the tracker

playback sound identical to the in-game playback, the following must be done:

Additionally, Channel 3 requires that the instrument and note is set during a volume change for the volume change to have any

effect. (Except for C00 .) For example:

You will not hear any volume change from the C20 in-game. Add a note and instrument on C20 to register the volume change.

ModPlug Tracker MOD
|C-502...C40|
|...........|
|...........|
|...........|
|........C..|
|...........|
|E-502......|

ModPlug Tracker MOD
|C-502...C40|
|...........|
|...........|
|...........|
|........C..|
|...........|
|E-502...C40|

ModPlug Tracker MOD
|C-511...C40|
|...........|
|...........|
|...........|
|........C20|
|...........|
|G-511...C40|

ModPlug Tracker MOD
|C-511...C40|



Instruments
All numbers listed here are in base-10 unless otherwise noted.

The pulse channels 1 and 2 have four instrument options:

1. 25% pulse

2. 50% pulse (square wave)

3. 75% pulse (inverted 25% pulse)

4. 12.5% pulse

Instruments 5 through 7 are intentionally left blank.

Channel 3, the wave channel, has 8 instrument options:

8. Buzzy (Source code calls this "random :P")

9. Ringy (useful for SFX)

10. (A) Sync Saw

11. (B) Ring Saw

12. (C) Octave Pulse + Triangle

13. (D) Sawtooth

14. (E) Square

15. (F) Sine

As of GB Studio 1.2.1, GBT Player uses 16 instruments to access pre-determined noise settings - instruments 16 to 32.

Instruments 16 to 23 use Periodic (looped) Noise at various pitches, while instruments 24 to 32 use Pseudorandom noise at

various pitches.

The nicknames and descriptions next to these instruments are not official for GBT Player, they are intended to help identify these

noise presets at a glance.

Periodic Noise:

16. (10hx) "stutter" - A square plus a pulse at random pulse widths

17. (11hx) "rumble" - The same waveform but faster

18. (12hx) "engine" - The same waveform but even faster

19. (13hx) "low tone" - Sounds like D5

20. (14hx) "undertone" - Sounds like E5 + 50cents

21. (15hx) "middletone" - Sounds like B5 + 50cents

22. (16hx) "overtone" - Sounds like D6 + 50cents

23. (17hx) "high tone" - Sounds like D7

Pseudorandom Noise:

24. (18hx) "earthquake" - A square with a thin pulse at random pulse widths



25. (19hx) "spaceship" - The same as 24 but faster

26. (1Ahx) "ocean" - etc.

27. (1Bhx) "scratch" - etc.

28. (1Chx) "glitch" - A fairly clean white-noise sample, unrelated to other instruments

29. (1Dhx) "volcano" - A pulse with rapidly changing pulse width

30. (1Ehx) "scream" - The same as 29 but faster

31. (1Fhx) "static" - etc.

As of GB Studio 1.2.1 there are no GBT Player-readable instruments beyond 31. (1Fhx)

Effects
There are two types of effects: Note-effects and Command-effects.

The only restrictions on effects is the Command-effects with Channel 3. It can use them when it's not trying to play a note/set the

instrument on the same row.

Note-effects (uses bit 3) - All channels can use these effects freely

Effect Name Notes on effect usage

0xy Arpeggio
Rapidly cycles between 3 notes. x and y both represent the # of semitones above the note the

arpeggio effect is attached to.

Cxx Volume Sets the volume to xx . See Volume Limitations for more info.

E8x Pan Sets the panning to x . 0-3 = Left, 4-B = Centre, C-F = Right.

ECx Note cut
Cuts the note after x frames. Must be below the Fxx speed for the cut to be heard. EC0 will reset

the duty cycle instead of cutting the note.

Command-effects (uses bit 4) - Channel 3 can use these effects if it's not trying to play a note/instrument on the same row.

Effect Name Notes on effect usage

Bxx Jump Jump to a specific position in the song, xx .

Dxx
Pattern

break

Jumps to the next pattern early, where xx is the row it should jump to in the next pattern. Using this

on the last pattern will break the song by reading garbage data beyond the song.



Effect Name Notes on effect usage

Fxx
Set

speed

Sets the song speed to xx . Valid values are 01 to 1F . The value represents how many frames

should the song wait before moving on to another row. Setting BPM speed has no effect upon

conversion.

For Channel 3 only, the instrument data is too large to allow the 4th bit of a Command effect to occur while it's trying to play a

note/set the instrument. Command-effects will ignore new notes on Channel 3 to compensate.

Speed Table

Fxx Value (in tracker) BPM (in tracker) BPM (in game)

F011 750 BPM 900 BPM

F021 375 BPM 450 BPM

F031 250 BPM 300 BPM

F041 187.5 BPM 225 BPM

F05 150 BPM 150 BPM

F06 125 BPM 128.57 BPM

F07 107.14 BPM 112.50 BPM

F08 93.75 BPM 100 BPM

F09 83.33 BPM 90 BPM

F0A 75 BPM 81.82 BPM

This is not a full table, it's just the top few speeds. It's here to highlight some of the speed discrepancies, albeit small to not be

very noticeable, with the exception of the values marked with 1.

You might notice that the value of the F effect, when converted to decimal, is just the speed divisor. For instance, F03 divides the

BPM by 3 ( 750 / 3 = 250 , or 900 / 3 = 300 ).

Because of how GB Studio is set up, a 60hz F05 effect, which would result in 180 BPM in-game, is impossible here.



While not in GB Studio, GBT has a flag called -speed that will handle BPM differently, which would require F96 effects for every

speed, as it won't handle any internal conversions to get the speed closer. This is the reason why F01 to F04 require F96 in both

modes, there's no equivalent for it in tracker speed.

1. Values marked with 1 require an additional F96 effect for the song to sound closer in speed when converted, or setting

the song BPM to 150. This F96 effect can be removed once you're done with your song, there won't be any difference as GBT

ignores this -- It's only here to set the BPM to something closer to the in-game version.

Tricks and Tips

1. High Speed

By using F01 to F04, you can achieve much higher granularity when it comes to changing volumes and creating sounds of sorts.

This means that with a high enough speed, you can create more varied bodies for sounds, with sort-of envelopes, or elaborate

effects (like 1 channel echos, which I'll cover here in a moment).

This trick means you're going from drums that sound flimsy and primitive to something more impressive.

Here's an example of a Snare Drum, at speed F02, that might sound good for you.

If this is longer than what you need, simply crop it starting from the bottom.

You can also use this for tones and stuff, like short staccato notes or flutes that fade in.

If you do this, keep in mind the GB Sound hardware has an annoying bug that resets the phase of each waveform on a

volume set, meaning you can get scratchy noise in a few emulators and also the real GB.

2. One channel echoes

This works on most speeds. This is useful for when you need a melody on top of some sort of echoing ostinato, or phrase, or

whatever.

To illustrate it, I'm going to try illustrating it like this, instead of a tracker layout:

ModPlug Tracker MOD
|C-526...C40
|C-527...C28
|........C20
|........C18
|........C10
|........C08
|........C04
|........C..
(this is on the noise channel)

A _ B _ C _ E _ G _ E _ C _ B _
Without 1ch Echo

+-----+ +-----+ +-----+
A _ B a C b E c G e E g C e B c
+-----+ +-----+ +-----+ +-----+



Notice how each lowercase letter takes the form of it's 3 step behind louder cousin? That's how the trick works. By having shorter

notes that, on each step, has another quieter note that's way behind, you get a cool echoing effect.

I can't explain it very well via text, so I recommend you check out this video by explod2a03 covering how this trick works with a

better example and actual audio: https://www.youtube.com/watch?v=6GI9gngTn_Y

The best way to do this in a tracker is to use a channel you're not using temporarily, copy your note sequence to it, delay it by 3

(or however many you need) rows, then right clicking on the selection and clicking "Amplify...", and setting the amplitude to

something lower than 50%.

After that, you should have both channels "alternate". Select the entirety of the channel with the echoes (from top to bottom), go to

the channel you want to merge the echoes with, right click, go to "Paste special", then click "Mix paste" (This should have a

shortcut, might want to learn it as it can be fairly useful).

3. Quick volume envelopes

Are you in a hurry? No problem, this simple trick will create linear envelopes:

1. Select two volume / C values of two separate notes (within the same channel), and everything in between

2. Right click and hover over "Interpolate"

3. Click on "Effect column"

4. You're done!

You might wonder how's it going to sound in-game; well, it'll sound as close as possible. The volumes it can't play it'll just clamp it

to the nearest ones it can play.

Frequently Asked Questions
Q: Can I use mp3/wav files?

A: No, but you can use .midi files. If you're looking for an easy way to add music to your game, you can ask the #collaborations

channel of the GB Studio Discord or browse the GB Studio Community Assets.

This has limited success, and there are easier options to get music in your game, such as the

Q: How do I convert a .midi file to .mod?

A: OpenMPT can open MIDI files and save the result to .mod Some resources on how to do this include a video tutorial as well as

Kazy's write-up article pinned in the #music-help section of the GB Studio discord.

Q: Can I use this .mod file I found online?

A: It won't sound as intended, but it can be made to sound good-enough with some adjustments. Any === notes need to be

replaced with the EC1 effect. All instrument restrictions should apply, and no melodic instruments should be using Channel 4. You

may also need to transpose the notes of a channel to account for differently-tuned samples, which you can learn more about in

your tracker's documentation.

Q: How do I stop a note from playing?

A: EC1 will mute a channel's note, C00 will mute the channel until it recieves another Cxx effect.

Q: What do I do if my song sounds completely giltched-out?

https://www.youtube.com/watch?v=6GI9gngTn_Y
https://github.com/DeerTears/GB-Studio-Community-Assets
https://www.youtube.com/watch?v=4AxZqK9_jKE


A: It's probably corrupted. It can likely be saved by using OpenMPT and saving it as a different filetype. If you're using

MilkyTracker, don't press "Save" on a .mod file, always work in a .xm file instead.

Q: Why is my song speed is faster in-game than it is in the tracker?

A: If you're using an Fxx effect with a value lower than F05 , add F96 to the first row of your song. This will not impact your in-

game playback speed.

Q: Can I play back voice clips/sound effects?

A: Not on GBT Player. Pokemon Yellow's method is unique, and LSDj does not leave much processing power for games to be

played while it's running.

Q: Can I use a different tool to write my music?

A: If the tool can natively export to .mod, try it!

Q: Why is my song playing glitched sounds when it tries to loop?

A: D00 is a problematic effect, try using Bxx instead. If you're already using Bxx , make sure the xx number does not go

above the number of pattern-slots in your song. A song's first pattern is always in slot 00.

Q: Why do some notes in OpenMPT appear red and sound higher/lower than they're supposed to sound?

A: Go over to the "General" tab that's under the New File, Open and Save buttons. Click the big button next to the "Name" field

that says "MOD (ProTracker), 4 channels". Once there, disable both ProTracker 1/2 Mode (MOD) and Amiga Frequency Limits.

This is a thing because the format here is meant to be used with the Amiga line of computers (that's where it was made), which

has frequency limits.

Q: Why does my song start out with garbage noise?

A: If your song doesn't start using the first two channels, add a note to their first row with a C00 effect on each.

Q: Can I play sound effects?

A: Yes, with limitations. View the next page of the documentation for more information. Playing sound effects will not interrupt the

song being played by GBT Player.

Tips
• Make sure you save frequently and also back-up your files. This is important in anything that you do and it's worth

mentioning here.

• If you're stuck, please ask for help in the Discord server, in #music-help . There's usually a few handful of people who

are willing to help out at most times.

• Frequently try out your music in your game. Things don't sound 1:1, and the built in preview just plays the .mod file

rather than building the music and previewing that.

• Keep it simple! Don't jump into this, trying to emulate what several artists have done with LSDj or whatever other tools,

you'll just get stuck.

• Don't be afraid of failure. I get this is kind of an unfitting tip, but it's important. Your first song won't be good, and that's

okay. You'll fail, sure, but you'll also gain knowledge on what you might've done wrong, or how you want to go on about with

your next endeavor.

• OpenMPT has a manual to help you get started. Here's a link, give it a read if you're stuck (or just ask for help)

https://discord.gg/v9xAJCJ
https://discord.gg/v9xAJCJ
https://wiki.openmpt.org/Tutorial:_Getting_Started


• Give the GBT Player documentation a read.

https://github.com/AntonioND/gbt-player


Assets Sound Effects

Sound Effects
Sound effects can be added to your game using the Play Sound Effect event in your Actor, Trigger or Scene scripts.

You can choose from playing a beep with a given pitch, a tone with a given frequency or cymbal crash.

You can also place the following file types into assets/sounds which then become available:

• .wav WAV audio file, preferably very short in length (3.64 seconds is about the limit!) and 8-bit mono (though GB Studio will

attempt to convert files not in this format).

• .vgm VGM audio file (Game Boy format only).

• .sav FX HAMMER sound effects.

Sound Effect

Beep

Priority

Pitch

4

Duration

0.5

✓ Wait until finished

Play Sound Effect

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/scripting/script-glossary/music-sound-effects#play-sound-effect


Assets UI Elements

UI Elements
Your project contains a number of files in assets/ui with fixed file names that define parts of your game's user interface. Editing

these files allows you to change the default font, set the window frame and modify the selection cursor.

If you remove any of the files in the ui folder they will be replaced with the default assets the next time you build your game

allowing you to revert any unwanted changes.

frame.png
The game engine uses 9-slice scaling of this image to create the frame around text boxes. Editing this image will allow you to

change the frame design or set it to a solid color.

cursor.png
This image is used as a selection cursor when showing multiple choice options in your game.

Requirements
UI PNGs must only contain the following four colors:

#071821

#306850

#86c06c

#e0f8cf

Download the GB Studio Palette Swatches for:

Adobe Photoshop

Aseprite

Fonts
Fonts are stored in assets/fonts , see Settings for more information.

Emotes
Emotes are stored in assets/emotes and must be defined as 16px x 16px sized .png files following the same color

https://www.gbstudio.dev/
https://en.wikipedia.org/wiki/9-slice_scaling
https://www.gbstudio.dev/assets/swatches/gb-studio-photoshop.aco
https://www.gbstudio.dev/assets/swatches/gb-studio-aseprite.aseprite


requirements used for creating spritesheets. You can display an emote by using the Show Emote Bubble event in a script.

Avatars
Avatars are stored in assets/avatars and must be defined as 16px x 16px sized .png files following the same color

requirements used for creating spritesheets. You can display an avatar in a Display Text event by clicking Add Avatar

within the event.



Scripting Events

Scripting Events
Scripting events allow you to control parts of your game based on interactions from the player. They can be used to connect

scenes together, change variables, give dialogue to characters, and more.

Scripts can be added to scenes, actors, or triggers. Selecting one of these objects will update the World Editor to show the script

of the selected object in the Editor Sidebar.

To start building a script, select an object and click the Add Event button in the Editor Sidebar to open the event menu. Select an

event to add it to the script. The topmost event is the first event to be run for that script.

Adding Events
After clicking the Add Event button, a menu will appear to choose the event to add. If you start typing you can filter this list or you

can click through the menu find what you're looking for. Click an event or press the Enter key to add the highlighted event to your

script.

https://www.gbstudio.dev/


Favourite Events
You can choose a number of events to be favourites, causing them to appear at the top of the Add Event Menu. To favourite an

event, hover over the menu item and click the Star button or press the Tab key.

Copy and Paste Events
To copy an event, click the down arrow next to an event. All scripts have this same down arrow for copying/pasting. Clicking the

down arrow on another event allows you to paste the clipboard event either before or after the selected one. You also have the

option to paste the values from the first event into the second.

As a shortcut for pasting, you can press the Alt key to turn all Add Event buttons into Paste Event buttons.

Types of Scripts
There are multiple script tabs to choose from the Editor Sidebar depending on which object you have currently selected.

Scene Scripts

These scripts can be accessed in the Editor Sidebar by selecting a scene in your project.

• On Init: This script will run once at the beginning of the Scene. The Scene On Init script is always run after the On Init script

for Actors in the Scene.

• On Player Hit: This script runs when the player is hit by an actor belonging to a collision group.

Actor Scripts

These scripts can be accessed in the Editor Sidebar by clicking an Actor in your project.

• On Init: This script will run once at the beginning of the Scene. Actors in a Scene will always run their On Init script before

their Scene's On Init script.

• On Interact: Standing the Player next to an Actor and pressing the A button will cause the Player to "interact" with the Actor.

Interacting with an Actor will begin this script. In Shoot 'Em Up scenes, interacting can additionally be done by colliding with

the Actor.

This script is often used for dialogue, using the "Text: Display Dialogue" event.

Enabling a collision group for an actor will convert this script to On Hit: Player, which looks for Player collision rather than

Player interaction. This behaviour is identical to On Interact in Shoot 'Em Up scenes.

• On Hit: This script runs when the Actor is hit by another Actor or Projectile belonging to a collision group.

• On Update: This script is run once every frame, and can only be added to non-player Actors.

Trigger Scripts

These scripts can be accessed in the Editor Sidebar by clicking a Trigger in your project.

• On Enter: This script runs when the player collides with the trigger.



• On Leave: This script runs when a player that was previously colliding leaves the trigger.



Scripting Events Event Glossary

Event Glossary

📄📄 Actor

Activate Actor

📄📄 Camera

Camera Lock To Player

📄📄 Color

If Color Mode Is Available

📄📄 Control Flow

Call Script

📄📄 Dialogue & Menus

Display Dialogue

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/scripting/script-glossary/actor
https://www.gbstudio.dev/docs/scripting/script-glossary/camera
https://www.gbstudio.dev/docs/scripting/script-glossary/color
https://www.gbstudio.dev/docs/scripting/script-glossary/control-flow
https://www.gbstudio.dev/docs/scripting/script-glossary/dialogue-menus


📄📄 Engine Fields

Engine Field Update

📄📄 Input

Attach Script To Button

📄📄 Math

Evaluate Math Expression

📄📄 Miscellaneous

Comment

📄📄 Music & Sound Effects

Play Music Track

https://www.gbstudio.dev/docs/scripting/script-glossary/engine-fields
https://www.gbstudio.dev/docs/scripting/script-glossary/input
https://www.gbstudio.dev/docs/scripting/script-glossary/math
https://www.gbstudio.dev/docs/scripting/script-glossary/miscellaneous
https://www.gbstudio.dev/docs/scripting/script-glossary/music-sound-effects


📄📄 Save Data

Game Data Load

📄📄 Scene

Change Scene

📄📄 Screen

Fade Screen In

📄📄 Timer

Attach Timer Script

📄📄 Variables

Evaluate Math Expression

https://www.gbstudio.dev/docs/scripting/script-glossary/save-data
https://www.gbstudio.dev/docs/scripting/script-glossary/scene
https://www.gbstudio.dev/docs/scripting/script-glossary/screen
https://www.gbstudio.dev/docs/scripting/script-glossary/timer
https://www.gbstudio.dev/docs/scripting/script-glossary/variables


Scripting Events Event Glossary Actor

Actor

Activate Actor
Activate an actor, causing it to become visible (if not also hidden) and for its OnUpdate script to start.

• Actor: The actor you want to activate.

Actor Move Cancel
Cancel any currently running "Actor Move" events affecting this actor. Causes the actor to stop in its current location.

• Actor: The actor you want to cancel movement for.

Actor Move Relative
Move an actor relative to its current position.

• Actor: The actor you want to move.

• X: The horizontal offset relative to the current position.

• Y: The vertical offset relative to the current position.

• Movement Type: Choose if should move in horizontal/vertical axis first or if it should move diagonally to destination.

Actor

Actor 1

Activate Actor

Actor

Actor 1

Actor Move Cancel

Actor

Actor 1

X

0

Y

0

Use Collisions

Actor Move Relative

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• Use Collisions: Set if collisions with both scene and actors should be taken into account while moving.

Actor Move To
Move an actor to a new position.

• Actor: The actor you want to move.

• X: The horizontal position.

• Y: The vertical position.

• Movement Type: Choose if should move in horizontal/vertical axis first or if it should move diagonally to destination.

• Use Collisions: Set if collisions with both scene and actors should be taken into account while moving.

Deactivate Actor
Deactivate an actor, causing it to act as if it had gone offscreen. It will become invisible and its OnUpdate script will be stopped.

• Actor: The actor you want to deactivate.

Hide Actor
Hide an actor, causing it to become invisible. Its OnUpdate script will continue to run while hidden.

• Actor: The actor you want to hide.

Actor

Actor 1

X

0

Y

0

Use Collisions

Actor Move To

Actor

Actor 1

Deactivate Actor

Actor

Actor 1

Hide Actor



Hide All Sprites
Disable rendering of sprite layer causing all sprites to become hidden until sprite rendering is reenabled.

If Actor At Position
Conditionally run part of the script if an actor is at a specified position.

• Actor: The actor you want to check.

• X: The horizontal position.

• Y: The vertical position.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Actor Distance From Actor
Conditionally run part of the script if an actor is within a certain distance of another actor.

Hide all sprites from screen.

Hide All Sprites

Actor

Actor 1

X

0

Y

0

If Actor At Position

Add Event

T
R

U
E

Else

If Actor Distance From Actor



• Actor: The actor you want to check.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Distance: The distance value.

• From: The actor to compare distance with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Actor Facing Direction
Conditionally run part of the script if an actor is facing in a specified direction.

• Actor: The actor you want to check.

• Direction: The actor direction.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Actor

Player

Comparison

<=

Distance

0

From

Actor 1

Add Event

T
R

U
E

Else

Actor

Actor 1

Direction

If Actor Facing Direction

Add Event

T
R

U
E

Else



If Actor Relative To Actor
Conditionally run part of the script based on the position of one actor relative to another.

• Actor: The actor you want to check.

• Comparison: The relative position comparison to use e.g. 'Is Above' or 'Is Below'.

• Other Actor: The actor to compare position with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Launch Projectile
Launch a projectile from an actor in a specified direction. When a project collides with other actors it will trigger their OnHit scripts.

Actor

Player

Comparison

Is Above

Other Actor

Actor 1

If Actor Relative To Actor

Add Event

T
R

U
E

Else

Launch Projectile



• Sprite Sheet: The sprite to use for rendering the projectile.

• Animation State: The sprite animation state to use.

• Source: The actor to launch the projectile from.

• Offset X: The horizontal offset from the source actors position to start launching the projectile.

• Offset Y: The vertical offset from the source actors position to start launching the projectile.

• Direction: The direction to launch the projectile. Can either be a fixed direction or based on an actor's current direction.

• Angle: The angle to launch the projectile.

• Direction Offset: The distance the projectile should move from launch position in its launch direction before becoming

visible.

• Speed: The movement speed.

• Animation Speed: The animation speed.

• Life Time: The amount of time in seconds that the projectile will live for.

• Loop Animation: Set if animation should loop.

• Destroy On Hit: Set if the projectile should be destroyed after its first collision.

• Collision Group: The collision group that should be used when registering collisions with actors.

Sprite Sheet

cat

Animation State

Default

Source

Actor 1

Offset X

0

Offset Y

0

Direction

Direction Offset

0

Speed

Speed 2

Animation Speed

Speed 4

Life Time

1

✓ Loop Animation ✓ Destroy On Hit

Collision Group

1 2 3

Collide With

Player 1 2 3



• Collide With: The groups of actors that will be checked for collisions. e.g. If it should pass through any actors but the player

set this field to just 'Player'.

Player Bounce
In platform scenes causes the player to bounce upwards by setting the player's velocity Y value.

• Height: How high the player should bounce.

Push Actor Away From Player
Causes the specified actor to be moved in the direction that the player is currently facing. Useful for creating block puzzles.

• Slide Until Collision: Set to make the actor continue to move until a collision with another actor or the scene occurs.

Set Actor Animation Frame
Set an actor's animation to a specified frame value.

• Actor: The actor you want to update.

• Animation Frame: The animation frame value.

Set Actor Animation Speed
Set the animation speed of an actor to a new value.

Height

Medium

Affects Platform scenes only

Player Bounce

Slide Until Collision

Push Actor Away From Player

Actor

Actor 1

Animation Frame

0

Set Actor Animation Frame

Set Actor Animation Speed



• Actor: The actor you want to update.

• Animation Speed: The animation speed.

Set Actor Animation State
Change the sprite animation state for a specified actor.

• Actor: The actor you want to update.

• Animation State: The sprite animation state to use.

Set Actor Collisions Disable
Disable all collision checks for an actor allowing the player and all other actor's to pass through it while moving.

• Actor: The actor you want to update.

Set Actor Collisions Enable
Re-enable collisions for an actor causing it to become solid again if collisions had previously been disabled.

Actor

Actor 1

Animation Speed

Speed 4

Actor

Actor 1

Animation State

Default

Set Actor Animation State

Actor

Actor 1

Set Actor Collisions Disable

Set Actor Collisions Enable



• Actor: The actor you want to update.

Set Actor Direction
Change the direction that an actor is currently facing.

• Actor: The actor you want to update.

• Direction: The actor direction.

Set Actor Movement Speed
Set the movement speed of an actor to a new value.

• Actor: The actor you want to update.

• Speed: The movement speed.

Set Actor Position
Set the position of an actor, causing it to instantly move to the new location.

Actor

Actor 1

Actor

Actor 1

Direction

Set Actor Direction

Actor

Actor 1

Speed

Speed 2

Set Actor Movement Speed

Set Actor Position



• Actor: The actor you want to update.

• X: The horizontal position.

• Y: The vertical position.

Set Actor Relative Position
Set the position of an actor relative to it's previous position, causing it to instantly move to the new location.

• Actor: The actor you want to update.

• X: The horizontal offset relative to the current position.

• Y: The vertical offset relative to the current position.

Set Actor Sprite Sheet
Set the sprite that should be used to render an actor.

• Actor: The actor you want to update.

• Sprite Sheet: The sprite to use for rendering the actor.

Actor

Actor 1

X

0

Y

0

Actor

Actor 1

X

0

Y

0

Set Actor Relative Position

Actor

Actor 1

Sprite Sheet

cat

Set Actor Sprite Sheet



Set Player Sprite Sheet
Set the sprite that should be used to render the player.

• Sprite Sheet: The sprite to use for rendering the player.

• Replace Default For Scene Type: Causes this sprite to override the default for all scenes of the current type. i.e. If you are

currently in a platformer scene, all other platformer scenes using the default sprite will now load using this replacement

sprite automatically instead.

Show Actor
Unhide a previously hidden actor.

• Actor: The actor you want to show.

Show All Sprites
Re-enable rendering of the sprite layer if previously disabled.

Show Emote Bubble
Show an emote image above a specified actor. The image will be positioned centrally above the actor's collision bounding box.

Sprite Sheet

cat

Replace Default For Scene Type

Set Player Sprite Sheet

Actor

Actor 1

Show Actor

Unhide all active sprites.

Show All Sprites

Show Emote Bubble



• Actor: The actor to display an emote image above.

• Emote: The emote image to display.

Start Actor's "On Update" Script
Start an actors OnUpdate script if it is not currently running. If the actor is currently offscreen its script may become deactivated

causing the script to stop running again, to prevent this set the 'Keep Running While Offscreen' setting for the actor's OnUpdate

script.

• Actor: The actor you want to update.

Stop Actor's "On Update" Script
Stop an actors OnUpdate script if it was currently running.

• Actor: The actor you want to update.

Store Actor Direction In Variable
Store the current direction of an actor within a variable.

Actor

Actor 1

Emote

Love

Actor

Actor 1

Start Actor's "On Update" Script

Actor

Actor 1

Stop Actor's "On Update" Script

Actor

Actor 1

Variable

$Variable0

Store Actor Direction In Variable



• Actor: The actor you want to check.

• Variable: The variable to use for the direction.

Store Actor Position In Variables
Store the current position of an actor within two variables, one to store the horizontal position and another to store the vertical

position.

• Actor: The actor you want to check.

• X: The variable to use for the horizontal position.

• Y: The variable to use for the vertical position.

Actor

Actor 1

X

$Variable0

Y

$Variable0

Store Actor Position In Variables



Scripting Events Event Glossary Camera

Camera

Camera Lock To Player
Move the camera back to centering on the player, locking into position when the player moves. Optionally allows locking to follow

player in only horizontal or vertical axis.

• Speed: The movement speed, use 'Instant' to immediately move to the new location.

• Lock Axis: Set if either horizontal axis, vertical axis or both should be locked.

Camera Move To
Move the camera to a new position.

• X: The horizontal position.

• Y: The vertical position.

• Speed: The movement speed, use 'Instant' to immediately move to the new location.

Camera Shake
Shake the camera for a period of time.

• Duration: The length of time to shake camera for in seconds or frames.

• Movement Type: Choose if camera should shake only in horizontal or vertical axis or if should shake in both directions.

Speed

Speed 1

Lock Axis

H V

Camera Lock To Player

X

0

Y

0

Speed

Speed 1

Camera Move To

Duration

0.5

Camera Shake

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


Fade Screen In
Fade the scene from a blank screen.

• Speed: The speed of the fade animation.

Fade Screen Out
Fade the scene to a blank screen.

• Speed: The speed of the fade animation.

Speed

Speed 1

Fade Screen In

Speed

Speed 1

Fade Screen Out



Scripting Events Event Glossary Color

Color

If Color Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports color games.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If GBA Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports GBA games.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Super GB Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports Super GB games.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Color Mode Is Available

Add Event

T
R

U
E

Else

If GBA Mode Is Available

Add Event

T
R

U
E

Else

If Super GB Mode Is Available

Add Event

T
R

U
E

Else

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


Set Background Palettes
Replace some or all of the current scene's background palettes.

• Palettes: The new palettes to use.

Set Emote Palette
Replace the palette used for emotes (sprite palette #8).

• Palette: The new palette to use.

Set Sprite Palettes
Replace some or all of the current scene's sprite palettes.

Palettes

0: Palette 0

1: Palette 1

2: Palette 2

3: Palette 3

4: Palette 4

5: Palette 5

6: Palette 6

7: Palette 7

Set Background Palettes

Palette

Palette

Set Emote Palette

Set Sprite Palettes



• Palettes: The new palettes to use.

Set UI Palette
Replace the palette used for the UI (background palette #8).

• Palette: The new palette to use.

Palettes

0: Palette 0

1: Palette 1

2: Palette 2

3: Palette 3

4: Palette 4

5: Palette 5

6: Palette 6

7: Palette 7

Palette

Palette

Set UI Palette



Scripting Events Event Glossary Control Flow

Control Flow

Call Script
Call one of your custom scripts. Once you have chosen a script you will be able to hook up any parameters required.

References

/docs/scripting/custom-scripts

• Script: The script to run.

If Actor At Position
Conditionally run part of the script if an actor is at a specified position.

• Actor: The actor you want to check.

• X: The horizontal position.

• Y: The vertical position.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Actor Distance From Actor
Conditionally run part of the script if an actor is within a certain distance of another actor.

Script

My Custom Script

Call Script

Actor

Actor 1

X

0

Y

0

If Actor At Position

Add Event

T
R

U
E

Else

If Actor Distance From Actor

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary
https://www.gbstudio.dev/docs/scripting/custom-scripts


• Actor: The actor you want to check.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Distance: The distance value.

• From: The actor to compare distance with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Actor Facing Direction
Conditionally run part of the script if an actor is facing in a specified direction.

• Actor: The actor you want to check.

• Direction: The actor direction.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Actor

Player

Comparison

<=

Distance

0

From

Actor 1

Add Event

T
R

U
E

Else

Actor

Actor 1

Direction

If Actor Facing Direction

Add Event

T
R

U
E

Else



If Actor Relative To Actor
Conditionally run part of the script based on the position of one actor relative to another.

• Actor: The actor you want to check.

• Comparison: The relative position comparison to use e.g. 'Is Above' or 'Is Below'.

• Other Actor: The actor to compare position with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Color Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports color games.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Game Data Saved
Conditionally run part of the script if save data is present within the specified save slot.

Actor

Player

Comparison

Is Above

Other Actor

Actor 1

If Actor Relative To Actor

Add Event

T
R

U
E

Else

If Color Mode Is Available

Add Event

T
R

U
E

Else

If Game Data Saved



• Save Slot: The save slot to use.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If GBA Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports GBA games.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Joypad Input Held
Conditionally run part of the script if the specified joypad button is currently pressed. Will not wait for user input and will only

execute once, if you wish to run a script every time a button is pressed use Attach Script To Button instead.

References

/docs/scripting/script-glossary/input#attach-script-to-button

Save Slot

Slot 1 Slot 2 Slot 3

Run if player has saved a game.

Add Event

T
R

U
E

Else

If GBA Mode Is Available

Add Event

T
R

U
E

Else

If Joypad Input Held

https://www.gbstudio.dev/docs/scripting/script-glossary/input#attach-script-to-button


• Any of: The input buttons to check.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Math Expression
Conditionally execute part of the script if the specified math expression evaluates to true.

References

/docs/scripting/math-expressions

• Expression: The expression to evaluate.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Super GB Mode Is Available
Conditionally run part of the script if the game is being played on a device or emulator that supports Super GB games.

Any of

A B Start Select

Add Event

T
R

U
E

Else

Expression

e.g. $health >= 0...

If Math Expression

Add Event

T
R

U
E

Else

If Super GB Mode Is Available

https://www.gbstudio.dev/docs/scripting/math-expressions


• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Compare With Value
Conditionally run part of the script based on the value of a variable compared with a value.

• Variable: The variable to use.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Value: The value to compare with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Compare With Variable
Conditionally run part of the script based on the value of a variable compared with another variable.

Add Event

T
R

U
E

Else

Variable

$Variable0

Comparison

==

Value

0

If Variable Compare With Value

Add Event

T
R

U
E

Else

If Variable Compare With Variable



• Variable: The variable to use.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Other Variable: The variable to compare with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Has Flag
Conditionally run part of the script if the specified variable has the chosen flag set as true.

• Variable: The variable to use.

• Flag: The flag to check.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Is 'False'
Conditionally run part of the script if the specified variable is set to false.

Variable

$Variable0

Comparison

==

Other Variable

$Variable0

Add Event

T
R

U
E

Else

Variable

$Variable0

Flag

Flag 1

If Variable Has Flag

Add Event

T
R

U
E

Else



• Variable: The variable to use.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Is 'True'
Conditionally run part of the script if the specified variable is set to true.

• Variable: The variable to use.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Loop
Run part of the script in a loop forever. Remember to break out of the loop otherwise the player will become stuck at this point.

You can use a Stop Script or Change Scene event to stop the loop.

Variable

$Variable0

If Variable Is 'False'

Add Event

T
R

U
E

Else

Variable

$Variable0

If Variable Is 'True'

Add Event

T
R

U
E

Else

Loop

Add Event



Loop For
Run part of the script in a loop while a counter variable is within a specified range. On each loop the counter variable is modified

before the next check.

• For: The variable to use.

• From: The initial value of the counter variable.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• To: The end value of the counter variable.

• Operation: The operation to use for combining a value with the counter variable after each loop.

• Value: The value to combine with the counter variable after each loop.

Loop While
Run part of the script in a loop while an expression is true.

• Expression: The expression to evaluate.

Stop Script
Stops the current script from running.

For

$Variable0

From

0

Comparison

<=

To

10

Operation

+=

Value

1

Loop For

Add Event

Expression

e.g. $health >= 0...

Loop While

Add Event



Switch
Conditionally run from multiple options depending on the value of the specified variable. First choose how many options you want

to compare the variable against, then set the values to compare and what scripts to execute when the value is matched.

• Variable: The variable to use.

• Number of options: The number of options required.

• Value: The value to compare the variable with for running this branch of the script.

Stops current script from running.

Stop Script

Variable

$Variable0

Number of options

2

Value

1

Value

2

Switch

When: $$value0$$

Add Event

When: $$value1$$

Add Event

Else

Add Event



Scripting Events Event Glossary Dialogue & Menus

Dialogue & Menus

Display Dialogue
Show a dialogue box at the bottom of the game screen. When text is shown the dialogue box will slide up from the bottom of the

screen and will slide down after it has been shown.

• Avatar: The avatar image to optionally display on the left hand side of the dialogue box.

Display Menu
Display a menu of multiple options and set the specified variable to the value of the chosen option. Multiple layouts are provided,

'Menu' displays as a single column on the right hand side of the game screen and 'Dialogue' displays a full width dialogue box

with two columns. You can optionally set the 'B' button to close the menu setting the variable to '0' and can also make the last

menu item return '0' when selected.

Text...

Avatar

Avatar 1

Display Dialogue

Display Menu

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• Set Variable: The variable to use.

• Number of options: The number of options required.

• Set to '1' if: The menu item text label which when selected will set variable to '1'.

• Set to '2' if: The menu item text label which when selected will set variable to '2'.

• Last option sets to '0': Set if last menu item should cause variable to become '0' when selected.

• Set to '0' if 'B' is pressed: Set if pressing 'B' should cause menu to close and variable to become '0'.

• Layout: Set the layout style of the menu.

Display Multiple Choice
Present two options to player allowing them to make a choice, will set the specified variable to true if the first option is chosen and

to false if the second option is chosen.

Set Variable

$Variable0

Number of options

2

Set to '1' if

Item 1

Set to '2' if

Item 2

Last option sets to '0'

✓ Set to '0' if 'B' is pressed

Layout

Dialogue

Set Variable

$Variable0

Set to 'True' if

Choice A

Set to 'False' if

Choice B

Display Multiple Choice



• Set Variable: The variable to use.

• Set to 'True' if: The menu item text label which when selected will set variable to 'true'.

• Set to 'False' if: The menu item text label which when selected will set variable to 'false'.

Set Text Animation Speed
Set the speed that dialogue boxes appear and disappear and how fast text appears within the box.

• Text Open Speed: The speed that the text and menu dialogue boxes scroll on to the screen.

• Text Close Speed: The speed that the text and menu dialogue boxes scroll off of the screen.

• Text Draw Speed: The speed that characters are drawn into the dialogue boxes.

• Fast forward text while buttons held: Allow skipping through animation of text if joypad buttons are pressed.

Text Open Speed

Speed 1

Text Close Speed

Speed 1

Text Draw Speed

Speed 1

✓ Fast forward text while buttons held

Set Text Animation Speed



Scripting Events Event Glossary Engine Fields

Engine Fields

Engine Field Update
Change the value of an Engine Field.

References

/docs/settings/#engine-settings

• Engine Field: The engine field to update.

Store Engine Field In Variable
Store the value of an Engine Field in a variable.

References

/docs/settings/#engine-settings

• Engine Field: The engine field to read the value of.

Engine Field

Jump Velocity

Engine Field Update

Engine Field

Jump Velocity

Store Engine Field In Variable

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


Scripting Events Event Glossary Input

Input

Attach Script To Button
Run the specified script any time a joypad button is pressed.

• Button: The joypad button to check.

• Override default button action: Set if the script should replace the default game action for the specified button.

• On Press: The script to run when the button is pressed.

If Joypad Input Held
Conditionally run part of the script if the specified joypad button is currently pressed. Will not wait for user input and will only

execute once, if you wish to run a script every time a button is pressed use Attach Script To Button instead.

References

/docs/scripting/script-glossary/input#attach-script-to-button

• Any of: The input buttons to check.

Button

A B Start Select

✓ Override default button action

On Press

Attach Script To Button

Add Event

O
N

 P
R

E
S

S

Any of

A B Start Select

If Joypad Input Held

Add Event

T
R

U
E

Else

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary
https://www.gbstudio.dev/docs/scripting/script-glossary/input#attach-script-to-button


• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Pause Script Until Input Pressed
Pauses the script until one of the specified joypad buttons are pressed.

• Any of: The input buttons to check.

Remove Button Script
Remove an attached script from a joypad button restoring the default functionality of the button.

• Remove script attached to input: The joypad button to remove the attached script from.

Any of

A B Start Select

Pause Script Until Input Pressed

Remove script attached to input

A B Start Select

Remove Button Script



Scripting Events Event Glossary Math

Math

Evaluate Math Expression
Set a variable to the result of evaluating a math expression.

References

/docs/scripting/math-expressions

• Variable: The variable to use.

• Expression: The expression to evaluate.

If Math Expression
Conditionally execute part of the script if the specified math expression evaluates to true.

References

/docs/scripting/math-expressions

• Expression: The expression to evaluate.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Math Functions
Allows you to perform various maths functions on a variable to add/subtract/multiply/divide/modulus a value/variable/random

number.

Variable

$Variable0

Expression

e.g. 5 + (6 * $health)...

Evaluate Math Expression

Expression

e.g. $health >= 0...

If Math Expression

Add Event

T
R

U
E

Else

Math Functions

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary
https://www.gbstudio.dev/docs/scripting/math-expressions
https://www.gbstudio.dev/docs/scripting/math-expressions


• Variable: The variable to use.

• Operation: The operation to use for modifying the variable value.

• Value: The value to combine with the variable using the selected operation.

Seed Random Number Generator
Place this to run in response to user input to ensure random numbers change between playthroughs.

Variable

$Variable0

Operation

Set To

Value

True

Place this to run in response to user input to ensure random numbers

change between playthroughs

Seed Random Number Generator



Scripting Events Event Glossary Miscellaneous

Miscellaneous

Comment
Allows you to leave notes within your scripts. Provides no functionality in-game. The text you type automatically gets set in the

event title, so you can collapse the comment and still read its content.

Event Group
Alows you to group together parts of your script for organizational purposes.

GBVM Script
Run a GBVM script.

References

/docs/scripting/gbvm/

/docs/scripting/gbvm/gbvm-operations

• Script: A valid GBVM Script to execute.

• References: A list of the assets and entities used in your GBVM script. Use this to let GB Studio know that a file is needed

Text...

Comment

Event Group

Add Event

Script

References

Add Reference

GBVM Script

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary
https://www.gbstudio.dev/docs/scripting/gbvm/gbvm-operations


by your script, preventing it from being excluded in the final build.

Link: Close

Link: Host

Link: Join

Link: Transfer

• Send Variable

• Receive Variable

• Packet Size

Close the current link session.

Link: Close

Host a link session.

Link: Host

Join a link session.

Link: Join

Send Variable

$Variable0

Receive Variable

$Variable0

Packet Size

1

Link: Transfer



Scripting Events Event Glossary Music & Sound Effects

Music & Sound Effects

Play Music Track
Plays a music file. If you play a new song while another song is playing, the old song will stop automatically.

• Song: The song to play.

Play Sound Effect
Play a sound effect, choose from playing a .WAV, .VGM, or .SAV (fxhammer) file from /assets/sounds or a preset sound

effect.

• Sound Effect: The sound effect to play. Can choose from files within /assets/sounds or from preset sounds like Beep ,

Pitch and Tone .

• Priority: The priority of the effect, high, medium or low. If two sound effects are playing at the same time then higher priority

sound effects will take precedence.

• Pitch: The pitch of the sound effect (Beep effect only).

• Frequency in hz: The frequency of the sound effect in hz (Tone effect only).

• Duration: The length of time to play the sound effect.

• Wait until finished: Set if script should pause until sound effect has finished playing.

Song

My Track 1

Play Music Track

Sound Effect

Beep

Priority

Pitch

4

Duration

0.5

✓ Wait until finished

Effect Index

0

Play Sound Effect

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• Effect Index: The effect number to play (for fxhammer only).

Set Music Routine
Attach a script to one of the four music routines that can be triggered from a .uge file. In the music editor you are able to use the

call routine effect in your songs to trigger these scripts in time to music.

References

/docs/assets/music/music-huge#effects

• Routine: The music routine, either 0, 1, 2 or 3.

• On Call: The script to run when the routine is called.

Stop Music
Stops any currently playing music.

Routine

0

On Call

Set Music Routine

Add Event

O
N

 C
A

LL

Stops any music that was previously playing.

Stop Music

https://www.gbstudio.dev/docs/assets/music/music-huge#effects


Scripting Events Event Glossary Save Data

Save Data

Game Data Load
Load the saved game data from the selected slot.

• Save Slot: The save slot to use.

Game Data Remove
Remove any previously saved game data in the selected slot.

• Save Slot: The save slot to use.

Game Data Save
Save the current game data into the selected slot.

• Save Slot: The save slot to use.

Load game data from memory.

Save Slot

Slot 1 Slot 2 Slot 3

Game Data Load

Clear all saved game data from memory.

Save Slot

Slot 1 Slot 2 Slot 3

Game Data Remove

Save current game data to memory. Requires cartridge type with BATTERY.

Save Slot

Slot 1 Slot 2 Slot 3

On Save

Game Data Save

Add Event

O
N

 S
A

V
E

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• On Save: A script to run after the save is completed. This won't be run on game load so you can use it show a 'Save Was

Successful' message.

If Game Data Saved
Conditionally run part of the script if save data is present within the specified save slot.

• Save Slot: The save slot to use.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Store Variable from Game Data In Variable
Read a variable's value from a specified save slot and store it in a variable.

• Set Variable: The variable to update.

• To Variable: The variable to read the value of.

• From Save Slot: The save slot to use.

Save Slot

Slot 1 Slot 2 Slot 3

Run if player has saved a game.

If Game Data Saved

Add Event

T
R

U
E

Else

Set Variable

$Variable0

To Variable

$Variable0

From Save Slot

Slot 1 Slot 2 Slot 3

Store Variable from Game Data In Variable



Scripting Events Event Glossary Scene

Scene

Change Scene
Transition to a new scene with player at a specified position and direction. A connection line will be drawn between the source of

the event and the destination scene with an icon appearing at the destination position. It's possible to drag this icon around and

between scenes to modify the event.

• Scene: The scene to transition to.

• X: The initial player horizontal position in the new scene.

• Y: The initial player vertical position in the new scene.

• Direction: The initial player direction.

• Fade Speed: The speed of the fade animation.

Remove All From Scene Stack
Remove all scenes from the scene stack without leaving the current scene.

Restore First Scene From Stack
Transition to the very first scene stored on the stack, for instance if you had multiple levels of menu scenes you could use this to

imediately return to the game scene. This event will cause the scene stack to become empty.

Scene

Scene 1

X

0

Y

0

Direction Fade Speed

Speed 1

Change Scene

Clears the stack of saved scene states.

Remove All From Scene Stack

Restore First Scene From Stack

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• Fade Speed: The speed of the fade animation.

Restore Previous Scene From Stack
Transition to the last stored scene from the scene stack using the specified fade speed. The previous scene will then be removed

from the stack so the next time this event is used it will transition to the scene before that.

• Fade Speed: The speed of the fade animation.

Store Current Scene On Stack
Store the current scene and player state on to the scene stack, this allows you to return to this exact location later using the

Scene Restore events. A common use of this event would be to include in a script just before a Change Scene event to open a

menu scene, in the menu scene you could wait for the player to press a close button and then use the Restore Previous From

Stack event to return to where the player opened the menu.

Pop all scene state from stack.

Fade Speed

Speed 1

Pop the top scene state from stack.

Fade Speed

Speed 1

Restore Previous Scene From Stack

Push scene state to stack.

Store Current Scene On Stack



Scripting Events Event Glossary Screen

Screen

Fade Screen In
Fade the scene from a blank screen.

• Speed: The speed of the fade animation.

Fade Screen Out
Fade the scene to a blank screen.

• Speed: The speed of the fade animation.

Hide Overlay
Hides the screen overlay.

Overlay Move To
Moves the overlay to a new position on the screen.

Speed

Speed 1

Fade Screen In

Speed

Speed 1

Fade Screen Out

Hides overlay window from screen.

Hide Overlay

X

0

Y

0

Speed

Speed 1

Overlay Move To

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


• X: The horizontal position.

• Y: The vertical position.

• Speed: The movement speed.

Show Overlay
Show either a black or white window over the top of the current game screen. Can be used to obscure and then reveal parts of

the scene background for example on the sample project logo screen.

• Fill Color: The color to fill the overlay with, either black or white.

• X: The horizontal position.

• Y: The vertical position.

Fill Color

Black

X

0

Y

0

Show Overlay



Scripting Events Event Glossary Timer

Timer

Attach Timer Script
Run the specified script repeatedly after a time interval. The script will keep running in the background until a Remove Timer

Script event is called or the scene is changed using a Change Scene event.

• Time Interval: The length of time to wait before running the script each time.

• On Tick: The script to run when the timer is triggered.

Idle
Pause the script for a single frame.

Remove Timer Script
Remove the timer script so it will no longer be called.

Restart Timer
Reset the countdown timer back to zero. The script will call again after the time specified originally.

Time Interval

0.5

On Tick

Attach Timer Script

Add Event

O
N

 T
IC

K

Wait until next frame

Idle

Disable the timer script

Remove Timer Script

Restart the countdown timer

Restart Timer

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary


Wait
Pause the script for a period of time.

• Duration: The length of time to pause the script for in seconds or frames.

Duration

0.5

Wait



Scripting Events Event Glossary Variables

Variables

Evaluate Math Expression
Set a variable to the result of evaluating a math expression.

References

/docs/scripting/math-expressions

• Variable: The variable to use.

• Expression: The expression to evaluate.

If Variable Compare With Value
Conditionally run part of the script based on the value of a variable compared with a value.

• Variable: The variable to use.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Value: The value to compare with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

If Variable Compare With Variable
Conditionally run part of the script based on the value of a variable compared with another variable.

Variable

$Variable0

Expression

e.g. 5 + (6 * $health)...

Evaluate Math Expression

Variable

$Variable0

Comparison

==

Value

0

If Variable Compare With Value

Add Event

T
R

U
E

Else

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/event-glossary
https://www.gbstudio.dev/docs/scripting/math-expressions


• Variable: The variable to use.

• Comparison: The comparison operator to use e.g. 'Less Than' or 'Greater Than'.

• Other Variable: The variable to compare with.

• True: The script to run if the condition is true.

• False: The script to run if the condition is false.

Math Functions
Allows you to perform various maths functions on a variable to add/subtract/multiply/divide/modulus a value/variable/random

number.

• Variable: The variable to use.

• Operation: The operation to use for modifying the variable value.

• Value: The value to combine with the variable using the selected operation.

Reset All Variables To 'False'
Reset all variables used by your project back to false.

Variable

$Variable0

Comparison

==

Other Variable

$Variable0

If Variable Compare With Variable

Add Event

T
R

U
E

Else

Variable

$Variable0

Operation

Set To

Value

True

Math Functions

Reset ALL variables back to 'False'.

Reset All Variables To 'False'



Seed Random Number Generator
Place this to run in response to user input to ensure random numbers change between playthroughs.

Store Actor Position In Variables
Store the current position of an actor within two variables, one to store the horizontal position and another to store the vertical

position.

• Actor: The actor you want to check.

• X: The variable to use for the horizontal position.

• Y: The variable to use for the vertical position.

Store Engine Field In Variable
Store the value of an Engine Field in a variable.

References

/docs/settings/#engine-settings

• Engine Field: The engine field to read the value of.

Store Variable from Game Data In Variable
Read a variable's value from a specified save slot and store it in a variable.

Place this to run in response to user input to ensure random numbers

change between playthroughs

Seed Random Number Generator

Actor

Actor 1

X

$Variable0

Y

$Variable0

Store Actor Position In Variables

Engine Field

Jump Velocity

Store Engine Field In Variable

Store Variable from Game Data In Variable



• Set Variable: The variable to update.

• To Variable: The variable to read the value of.

• From Save Slot: The save slot to use.

Variable Decrement By 1
Decrease the value of the specified variable by one.

• Variable: The variable to use.

Variable Flags Add
Set selected flags to true on a variable. All unselected flags will keep their previous value.

Set Variable

$Variable0

To Variable

$Variable0

From Save Slot

Slot 1 Slot 2 Slot 3

Variable

$Variable0

Variable Decrement By 1

Variable Flags Add



• Variable: The variable to use.

• Flag 1: Set flag 1 to true.

• Flag 2: Set flag 2 to true.

• Flag 3: Set flag 3 to true.

Variable Flags Clear
Set selected flags to false on a variable. All unselected flags will keep their previous value.

Variable

$Variable0

Flag 1 Flag 2

Flag 3 Flag 4

Flag 5 Flag 6

Flag 7 Flag 8

Flag 9 Flag 10

Flag 11 Flag 12

Flag 13 Flag 14

Flag 15 Flag 16

Variable Flags Clear



• Variable: The variable to use.

• Flag 1: Set flag 1 to false.

• Flag 2: Set flag 2 to false.

• Flag 3: Set flag 3 to false.

Variable Flags Set
Set the value of a variable by enabling individual bits of the 16-bit number. Allows 16 true/false values to be stored within a single

variable. Setting the flags will replace the previous value of the variable.

Variable

$Variable0

Flag 1 Flag 2

Flag 3 Flag 4

Flag 5 Flag 6

Flag 7 Flag 8

Flag 9 Flag 10

Flag 11 Flag 12

Flag 13 Flag 14

Flag 15 Flag 16

Variable Flags Set



• Variable: The variable to use.

• Flag 1: Set flag 1 to true.

• Flag 2: Set flag 2 to true.

• Flag 3: Set flag 3 to true.

Variable Increment By 1
Increase the value of the specified variable by one.

• Variable: The variable to use.

Variable Set To 'False'
Set the value of the specified variable to false.

Variable

$Variable0

Flag 1 Flag 2

Flag 3 Flag 4

Flag 5 Flag 6

Flag 7 Flag 8

Flag 9 Flag 10

Flag 11 Flag 12

Flag 13 Flag 14

Flag 15 Flag 16

Variable

$Variable0

Variable Increment By 1

Variable

$Variable0

Variable Set To 'False'



• Variable: The variable to use.

Variable Set To 'True'
Set the value of the specified variable to true.

• Variable: The variable to use.

Variable Set To Value
Set the specified variable to a defined value.

• Variable: The variable to use.

• Value: The value to set the selected variable to.

Variable

$Variable0

Variable Set To 'True'

Variable

$Variable0

Value

0

Variable Set To Value



Scripting Events Custom Scripts

Custom Scripts
Custom Scripts allow you to create reusable procedures in your game that can be called from any of your scripts.

Your Custom Scripts will be listed in the Scripts section of the Navigator while on the Game World View.

Click the + button to create a new Custom Script or select one to edit from the list.

Once you've given your Custom Script a name you can start building a script in the same way you would for Actors, Triggers and

Scenes.

Parameters
Whenever you add an event that reads a Variable it will get added to the list of input parameters for the Custom Script, where you

are able to give that input a memorable name. Events that affect Actors will, by default, apply to the player but if you use the actor

selector you will be able to set the event to read the Actor value from an input parameter also.

For example the following custom script makes Actor A rotate in a circle.

https://www.gbstudio.dev/


Passing by Reference or Value
When using variables in a custom script you have the choice to pass by reference (By Ref) or to pass by value (By Val) by clicking

the drop down button next to each variable in the parameters list.



• Pass By Reference Allows the custom script to modify the value of a variable parameter. Any changes to the variable's

value from inside the script will also update the variable's value outside of the script. Use this if you want the custom script to

be able to change the value of a variable that was passed in.

• Pass By Value Copies the current value of the variable at call time so that any changes to the variable parameter from

within the script will not affect the variable that was passed in. Use this if you want the custom script to NOT be able to

change the variable that was passed in.

Calling a Custom Script
Once you have created a Custom Script you can call it from any other script by adding a Call Script event which will appear as

follows.

You first must choose the script which you wish to call, if that script has any variable or actor parameters you can then choose

which inputs to use.

If you ever want to edit the Custom Script you can return to it using the list on the Navigator or by selecting Edit Custom Script

from the event dropdown menu.



Scripting Events Math Expressions

Math Expressions
The Evaluate Math Expression and If Math Expression events allow mathematical expressions to be used for performing

calculations.

Expressions allow you to use many mathematical operations such as:

• + add

• - subtract

• * multiply

• / divide

• == Equal to

• != Not equal to

• >= Greater than or equal to

You are also able to use the following functions

• min(a, b) return the minimum of two values a and b

• max(a, b) return the maximum of two values a and b

• abs(a) return the absolute value of a

You can use variables in expressions by typing $ and searching for the variable's name.

Expression

e.g. $health >= 0...

If Math Expression

Add Event

T
R

U
E

Else

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/scripting/script-glossary/math#evaluate-math-expression
https://www.gbstudio.dev/docs/scripting/script-glossary/math#if-math-expression


Scripting Events GBVM

GBVM
GB Studio's game engine runs on a stack based virtual machine called GBVM game engine. You can access the virtual machine

directly by using a GBVM Script event in you game.

Learning GBVM
If you want to know more about GBVM and how to use it then check out GB Studio Central's getting started guide, Learning

GBVM.

Script

VM_PUSH_CONST           0       ; Y coord

VM_PUSH_CONST           0       ; X coord

VM_PUSH_CONST           128

VM_LOAD_TILESET         .ARG0, ___bank_bg_cave, _bg_cave

VM_OVERLAY_SET_MAP      .ARG0, .ARG1, .ARG2, ___bank_bg_cave, _bg_cave
References

Add Reference

GBVM Script

https://www.gbstudio.dev/
https://github.com/chrismaltby/gbvm
https://www.gbstudio.dev/docs/scripting/script-glossary/miscellaneous#gbvm-script
https://gbstudiocentral.com/tips/learning-gbvm/
https://gbstudiocentral.com/tips/learning-gbvm/


Scripting Events GBVM GBVM Operations

GBVM Operations

Core

VM_STOP

Stops execution of context

VM_PUSH_CONST

Pushes immediate value to the top of the VM stack

• VAL: immediate value to be pushed

VM_POP

Removes the top values from the VM stack

• N: number of values to be removed from the stack

VM_CALL

Call script by near address

• ADDR: address of the script subroutine

VM_RET

Returns from the near call

VM_RET_N

Returns from the near call and clear N arguments on stack

VM_STOP

VM_PUSH_CONST VAL

VM_POP N

VM_CALL ADDR

VM_RET

VM_RET_N N

https://www.gbstudio.dev/


• N: number of arguments to be removed from the stack

VM_GET_FAR

Get byte or word by the far pointer into variable

• IDX: Target variable

• SIZE: Size of the ojject to be acquired:

.GET_BYTE - get 8-bit value

.GET_WORD - get 16-bit value

• BANK: Bank number of the object

• ADDR: Address of the object

VM_LOOP

Loops while variable is not zero, by the near address

• IDX: Loop counter variable

• LABEL: Jump label for the next iteration

• N: amount of values to be removed from stack on exit

.CASE

VM_SWITCH

Compares variable with a set of values, and if equal jump to the specified label.

values for testing may be defined with the .CASE macro, where VAL parameter is a value for testing and LABEL is a jump label

• IDX: variable for compare

• SIZE: amount of entries for test.

• N: amount of values to de cleaned from stack on exit

VM_JUMP

Jumps to near address

VM_GET_FAR IDX, SIZE, BANK, ADDR

VM_LOOP IDX, LABEL, N

.CASE VAL, LABEL

VM_SWITCH IDX, SIZE, N

VM_JUMP LABEL



• ARG0: jump label

VM_CALL_FAR

Call far routine (inter-bank call)

• BANK: Bank number of the routine

• ADDR: Address of the routine

VM_RET_FAR

Return from the far call

VM_RET_FAR_N

Return from the far call and remove N arguments from stack

• N: Number of arguments to be removed from stack

VM_INVOKE

Invokes C function until it returns true.

• BANK: Bank number of the function

• ADDR: Address of the function, currently 2 functions are implemented:

_wait_frames - wait for N vblank intervals

_camera_shake - shake camera N times

• N: Number of arguments to be removed from stack on return

• PARAMS: Points the first parameter to be passed into the C function

VM_BEGINTHREAD

Spawns a thread in a separate context

• BANK: Bank number of a thread function

• THREADPROC: Address of a thread function

• HTHREAD: Variable that receives the thread handle

VM_CALL_FAR BANK, ADDR

VM_RET_FAR

VM_RET_FAR_N N

VM_INVOKE BANK, ADDR, N, PARAMS

VM_BEGINTHREAD BANK, THREADPROC, HTHREAD, NARGS



• NARGS: Amount of values from the stack to be copied into the stack of the new context

VM_IF

Compares two variables using for condition.

• CONDITION: Condition for test:

.EQ - variables are equal

.LT - A is lower than B

.LTE - A is lower or equal than B

.GT - A is greater than B

.GTE - A is greater or equal than B

.NE - A is not equal to B

• IDXA: A variable

• IDXB: B variable

• LABEL: Jump label when result is TRUE

• N: Number of values to be removed from stack if the result is true

VM_PUSH_VALUE_IND

Pushes a value on VM stack or a global indirectly from an index in the variable

• IDX: variable that contains the index of the variable to be pushed on stack

VM_PUSH_VALUE

Pushes a value of the variable onto stack

• IDX: variable to be pushed

VM_RESERVE

Reserves or disposes amount of values on stack

• N: positive value - amount of variables to be reserved on stack, negative value - amount of variables to be popped from

stack

VM_IF CONDITION, IDXA, IDXB, LABEL, N

VM_PUSH_VALUE_IND IDX

VM_PUSH_VALUE IDX

VM_RESERVE N



VM_SET

Assigns variable B to variable A

• IDXA: Variable A

• IDXB: Variable B

VM_SET_CONST

Assigns immediate value to the variable

• IDX: Target variable

• VAL: Source immediate value

VM_RPN

Reverse Polish Notation (RPN) calculator, returns result(s) on the VM stack

.R_INT8

.R_INT16

.R_REF

.R_REF_IND

.R_REF_SET

VM_SET IDXA, IDXB

VM_SET_CONST IDX, VAL

VM_RPN

.R_INT8 ARG0

.R_INT16 ARG0

.R_REF ARG0

.R_REF_IND ARG0

.R_REF_SET ARG0



.R_OPERATOR

.R_STOP

VM_JOIN

Joins a thread

• IDX: Thread handle for joining

VM_TERMINATE

Kills a thread

• IDX: Thread handle for killing

VM_IDLE

Signals thread runner, that context is in a waitable state

VM_GET_TLOCAL

Gets thread local variable.

• IDXA: Target variable

• IDXB: Thread local variable index

VM_IF_CONST

Compares a variable to an immediate value

• CONDITION: Condition for test:

.R_OPERATOR ARG0

.R_STOP

VM_JOIN IDX

VM_TERMINATE IDX

VM_IDLE

VM_GET_TLOCAL IDXA, IDXB

VM_IF_CONST CONDITION, IDXA, B, LABEL, N



.EQ - variables are equal

.LT - A is lower than B

.LTE - A is lower or equal than B

.GT - A is greater than B

.GTE - A is greater or equal than B

.NE - A is not equal to B

• IDXA: A variable

• B: immediate value to be compared with

• LABEL: Jump label when result is TRUE

• N: Number of values to be removed from stack if the result is true

VM_GET_UINT8

Gets unsigned int8 from WRAM

• IDXA: Target variable

• ADDR: Address of the unsigned 8-bit value in WRAM

VM_GET_INT8

Gets signed int8 from WRAM

• IDXA: Target variable

• ADDR: Address of the signed 8-bit value in WRAM

VM_GET_INT16

Gets signed int16 from WRAM

• IDXA: Target variable

• ADDR: Address of the signed 16-bit value in WRAM

VM_SET_UINT8

Sets unsigned int8 in WRAM from variable

• ADDR: Address of the unsigned 8-bit value in WRAM

• IDXA: Source variable

VM_GET_UINT8 IDXA, ADDR

VM_GET_INT8 IDXA, ADDR

VM_GET_INT16 IDXA, ADDR

VM_SET_UINT8 ADDR, IDXA



VM_SET_INT8

Sets signed int8 in WRAM from variable

• ADDR: Address of the signed 8-bit value in WRAM

• IDXA: Source variable

VM_SET_INT16

Sets signed int16 in WRAM from variable

• ADDR: Address of the signed 16-bit value in WRAM

• IDXA: Source variable

VM_SET_CONST_INT8

Sets signed int8 in WRAM to the immediate value

• ADDR: Address of the signed 8-bit value in WRAM

• V: Immediate value

VM_SET_CONST_UINT8

Sets unsigned int8 in WRAM to the immediate value

• ADDR: Address of the unsigned 8-bit value in WRAM

• V: Immediate value

VM_SET_CONST_INT16

Sets signed int16 in WRAM to the immediate value

• ADDR: Address of the signed 16-bit value in WRAM

• V: Immediate value

VM_SET_INT8 ADDR, IDXA

VM_SET_INT16 ADDR, IDXA

VM_SET_CONST_INT8 ADDR, V

VM_SET_CONST_UINT8 ADDR, V

VM_SET_CONST_INT16 ADDR, V



VM_INIT_RNG

Initializes RNG seed with the value from the variable

• IDX: Seed value

VM_RANDOMIZE

Initializes RNG seed

VM_RAND

Returns random value between MIN and MIN + LIMIT

• IDX: Target variable

• MIN: Minimal random value

• LIMIT: range of the random values

VM_LOCK

Disable switching of VM threads

VM_UNLOCK

Enable switching of VM threads

VM_RAISE

Raises an exception

• CODE: Exception code:

EXCEPTION_RESET - Resets the device.

EXCEPTION_CHANGE_SCENE - Changes to a new scene.

EXCEPTION_SAVE - Saves the state of the game.

VM_INIT_RNG IDX

VM_RANDOMIZE

VM_RAND IDX, MIN, LIMIT

VM_LOCK

VM_UNLOCK

VM_RAISE CODE, SIZE



EXCEPTION_LOAD - Loads the saved state of the game.

• SIZE: Length of the parameters to be passed into the exception handler

VM_SET_INDIRECT

Assigns variable that is addressed indirectly to the other variable

• IDXA: Variable that contains the index of the target variable

• IDXB: Source variable that contains the value to be assigned

VM_GET_INDIRECT

Assigns a variable to the value of variable that is addressed indirectly

• IDXA: Target variable

• IDXB: Variable that contains the index of the source variable

VM_TEST_TERMINATE

Terminates unit-testing immediately

• FLAGS: terminate flags:

.TEST_WAIT_VBL wait for VBlank before terminating

VM_POLL_LOADED

Checks that VM state was restored and reset the restore flag

• IDX: Target result variable

VM_PUSH_REFERENCE

Translates IDX into absolute index and pushes result to VM stack

• IDX: index of the variable

VM_SET_INDIRECT IDXA, IDXB

VM_GET_INDIRECT IDXA, IDXB

VM_TEST_TERMINATE FLAGS

VM_POLL_LOADED IDX

VM_PUSH_REFERENCE IDX



VM_CALL_NATIVE

Calls native code by the far pointer

• BANK: Bank number of the native routine

• PTR: Address of the native routine

VM_MEMSET

Clear VM memory

• DEST: First variable to be cleared

• VALUE: Variable containing the value to be filled with

• COUNT: Number of variables to be filled

VM_MEMCPY

copy VM memory

• DEST: First destination variable

• SOUR: First source variable

• COUNT: Number of variables to be copied

Actor

VM_ACTOR_MOVE_TO

Move actor to the new position

• IDX: points to the beginning of the pseudo-structure that contains these members:

ID - Actor number

X - New X-coordinate of the actor

Y - New Y-coordinate of the actor

ATTR - Bit flags:

.ACTOR_ATTR_H_FIRST - move horizontal first

.ACTOR_ATTR_CHECK_COLL - respect collisions

.ACTOR_ATTR_DIAGONAL - allow diagonal movement

VM_CALL_NATIVE BANK, PTR

VM_MEMSET DEST, VALUE, COUNT

VM_MEMCPY DEST, SOUR, COUNT

VM_ACTOR_MOVE_TO IDX



VM_ACTOR_MOVE_CANCEL

Cancel movement of actor

• ACTOR: Variable that contains the actor number

VM_ACTOR_ACTIVATE

Activate the actor

• ACTOR: Variable that contains the actor number

VM_ACTOR_SET_DIR

Set direction of the actor

• ACTOR: Variable that contains the actor number

• DIR: one of these directions:

.DIR_DOWN - actor faces down

.DIR_RIGHT - actor faces right

.DIR_UP - actor faces up

.DIR_LEFT - actor faces left

VM_ACTOR_DEACTIVATE

Deactivate the actor

• ACTOR: Variable that contains the actor number

VM_ACTOR_SET_ANIM

Set actor animation

• ACTOR: Variable that contains the actor number

• ANIM: Animation number

VM_ACTOR_MOVE_CANCEL ACTOR

VM_ACTOR_ACTIVATE ACTOR

VM_ACTOR_SET_DIR ACTOR, DIR

VM_ACTOR_DEACTIVATE ACTOR

VM_ACTOR_SET_ANIM ACTOR, ANIM



VM_ACTOR_SET_POS

Set new actor position

• IDX: points to the beginning of the pseudo-structure that contains these members:

ID - Actor number

X - New X-coordinate of the actor

Y - New Y-coordinate of the actor

VM_ACTOR_EMOTE

Set actor emotion

• ACTOR: Variable that contains the actor number

• AVATAR_BANK: Bank of the avatar image

• AVATAR: Address of the avatar image

VM_ACTOR_SET_BOUNDS

Set actor bounding box

• ACTOR: Variable that contains the actor number

• LEFT: Left boundary of the bounding box

• RIGHT: Right boundary of the bounding box

• TOP: Top boundary of the bounding box

• BOTTOM: Bottom boundary of the bounding box

VM_ACTOR_SET_SPRITESHEET

Set actor spritesheet

• ACTOR: Variable that contains the actor number

• SHEET_BANK: Bank of the sprite sheet

• SHEET: Address of the sprite sheet

VM_ACTOR_SET_POS IDX

VM_ACTOR_EMOTE ACTOR, AVATAR_BANK, AVATAR

VM_ACTOR_SET_BOUNDS ACTOR, LEFT, RIGHT, TOP, BOTTOM

VM_ACTOR_SET_SPRITESHEET ACTOR, SHEET_BANK, SHEET



VM_ACTOR_SET_SPRITESHEET_BY_REF

Set actor spritesheet using far the pointer in variables

• ACTOR: Variable that contains the actor number

• FAR_PTR: points to the pseudo-struct that contains the address of the sprite sheet:

BANK - Bank of the sprite sheet

DATA - Address of the sprite sheet

VM_ACTOR_REPLACE_TILE

Replace tile in the actor spritesheet

• ACTOR: Variable that contains the actor number

• TARGET_TILE: Tile number for replacement

• TILEDATA_BANK: Bank of the tile data

• TILEDATA: Address of the tile data

• START: Start tile in the tile data array

• LEN: Amount of tiles for replacing

VM_ACTOR_GET_POS

Get actor position

• IDX: points to the beginning of the pseudo-structure that contains these members:

ID - Actor number

X - X-coordinate of the actor

Y - Y-coordinate of the actor

VM_ACTOR_GET_DIR

Get direction of the actor

• IDX: Variable that contains the actor number

• DEST: Target variable that receive the actor direction

VM_ACTOR_SET_SPRITESHEET_BY_REF ACTOR, FAR_PTR

VM_ACTOR_REPLACE_TILE ACTOR, TARGET_TILE, TILEDATA_BANK, TILEDATA, START, LEN

VM_ACTOR_GET_POS IDX

VM_ACTOR_GET_DIR IDX, DEST



VM_ACTOR_GET_ANGLE

Get actor angle

• IDX: Variable that contains the actor number

• DEST: Target variable that receive the actor angle

VM_ACTOR_SET_ANIM_TICK

Set actor animation tick

• ACTOR: Variable that contains the actor number

• TICK: Animation tick

VM_ACTOR_SET_MOVE_SPEED

Set actor move speed

• ACTOR: Variable that contains the actor number

• SPEED: Actor move speed

VM_ACTOR_SET_FLAGS

Set actor flags

• ACTOR: Variable that contains the actor number

• FLAGS: bit values to be set or cleared:

.ACTOR_FLAG_PINNED - pin/unpin the actor

.ACTOR_FLAG_HIDDEN - hide/show actor

.ACTOR_FLAG_ANIM_NOLOOP - disable animation loop

.ACTOR_FLAG_COLLISION - disable/enable collision

.ACTOR_FLAG_PERSISTENT - set persistent actor flag

• MASK: bit mask of values to be set or cleared

VM_ACTOR_SET_HIDDEN

VM_ACTOR_GET_ANGLE IDX, DEST

VM_ACTOR_SET_ANIM_TICK ACTOR, TICK

VM_ACTOR_SET_MOVE_SPEED ACTOR, SPEED

VM_ACTOR_SET_FLAGS ACTOR, FLAGS, MASK

VM_ACTOR_SET_HIDDEN ACTOR, HIDDEN



Hide/show actor

• ACTOR: Variable that contains the actor number

• HIDDEN: .ACTOR_VISIBLE shows actor, .ACTOR_HIDDEN hides the actor

VM_ACTOR_SET_COLL_ENABLED

Enable/disable actor collisions

• ACTOR: Variable that contains the actor number

• ENABLED: .ACTOR_COLLISION_DISABLED disables actor collision, .ACTOR_COLLISION_ENABLED enables actor

collision

VM_ACTOR_TERMINATE_UPDATE

Terminates the actor update script

• ACTOR: Variable that contains the actor number

VM_ACTOR_SET_ANIM_FRAME

Set animation frame for the actor

• ACTOR: pseudo-struct that contains these members:

ID - Actor number

FRAME - Animation frame

VM_ACTOR_GET_ANIM_FRAME

Get animation frame of the actor

• ACTOR: pseudo-struct that contains these members:

ID - Actor number

FRAME - Animation frame

VM_ACTOR_SET_ANIM_SET

Set animation frame for the actor

VM_ACTOR_SET_COLL_ENABLED ACTOR, ENABLED

VM_ACTOR_TERMINATE_UPDATE ACTOR

VM_ACTOR_SET_ANIM_FRAME ACTOR

VM_ACTOR_GET_ANIM_FRAME ACTOR

VM_ACTOR_SET_ANIM_SET ACTOR, OFFSET



• ACTOR: Variable that contains the actor number

• OFFSET: Animation set number

Camera

VM_CAMERA_MOVE_TO

Moves the camera to the new position

• IDX: Start of the pseudo-structure which contains the new camera position:

X - X-coordinate of the camera position

Y - Y-coordinate of the camera position

• SPEED: Speed of the camera movement

• AFTER_LOCK: Lock status of the camera after the movement

.CAMERA_LOCK - lock camera by X and Y

.CAMERA_LOCK_X - lock camera by X

.CAMERA_LOCK_Y - lock camera by Y

.CAMERA_UNLOCK - unlock camera

VM_CAMERA_SET_POS

Sets the camera position

• IDX: Start of the pseudo-structure which contains the new camera position:

X - X-coordinate of the camera position

Y - Y-coordinate of the camera position

Color

.DMG_PAL

.CGB_PAL

VM_LOAD_PALETTE

VM_CAMERA_MOVE_TO IDX, SPEED, AFTER_LOCK

VM_CAMERA_SET_POS IDX

.DMG_PAL COL1, COL2, COL3, COL4

.CGB_PAL R1,G1,B1 R2,G2,B2 R3,G3,B3 R4,G4,B4

VM_LOAD_PALETTE MASK, OPTIONS



Game Boy

VM_LOAD_TILES

VM_LOAD_TILESET

Loads a new tileset into the background VRAM tiles starting at a given tile id ( IDX ).

VM_SET_SPRITE_VISIBLE

VM_SHOW_SPRITES

VM_HIDE_SPRITES

VM_INPUT_WAIT

VM_INPUT_ATTACH

VM_INPUT_GET

VM_CONTEXT_PREPARE

VM_LOAD_TILES ID, LEN, BANK, ADDR

VM_LOAD_TILESET IDX, BANK, BKG

VM_SET_SPRITE_VISIBLE MODE

VM_SHOW_SPRITES

VM_HIDE_SPRITES

VM_INPUT_WAIT MASK

VM_INPUT_ATTACH MASK, SLOT

VM_INPUT_GET IDX, JOYID

VM_CONTEXT_PREPARE SLOT, BANK, ADDR



VM_OVERLAY_SET_MAP

VM_GET_TILE_XY

VM_REPLACE_TILE

VM_POLL

VM_SET_SPRITE_MODE

VM_REPLACE_TILE_XY

VM_INPUT_DETACH

GB Printer

VM_PRINTER_DETECT

Detect printer

• ERROR: Target variable that receives the result of detection

• DELAY: Detection timeout

VM_PRINT_OVERLAY

VM_OVERLAY_SET_MAP IDX, X_IDX, Y_IDX, BANK, BKG

VM_GET_TILE_XY TILE_IDX, X_IDX, Y_IDX

VM_REPLACE_TILE TARGET_TILE_IDX, TILEDATA_BANK, TILEDATA, START_IDX, LEN

VM_POLL IDX_EVENT, IDX_VALUE, MASK

VM_SET_SPRITE_MODE MODE

VM_REPLACE_TILE_XY X, Y, TILEDATA_BANK, TILEDATA, START_IDX

VM_INPUT_DETACH MASK

VM_PRINTER_DETECT ERROR, DELAY

VM_PRINT_OVERLAY ERROR, START, HEIGHT, MARGIN



Print up to HEIGHT rows of the overlay window (must be multiple of 2)

• ERROR: Target variable that receives the result of printing

• START: Start line of the overlay window

• HEIGHT: Amount of lines to print

• MARGIN: Lines to feed after the printing is finished

Load and Save

.SAVE_SLOT

VM_SAVE_PEEK

Reads variables from the save slot

• RES: Result of the operation

• DEST: First destination variable to be read into

• SOUR: First source variable in the save slot

• COUNT: Number of variables to be read

• SLOT: Save slot number

VM_SAVE_CLEAR

Erases data in save slot

• SLOT: Slot number

Math

VM_SIN_SCALE

VM_COS_SCALE

.SAVE_SLOT SLOT

VM_SAVE_PEEK RES, DEST, SOUR, COUNT, SLOT

VM_SAVE_CLEAR SLOT

VM_SIN_SCALE IDX, IDX_ANGLE, SCALE

VM_COS_SCALE IDX, IDX_ANGLE, SCALE



Music and Sound

VM_MUSIC_PLAY

Starts playing of music track

• BANK: Bank number of the track

• ADDR: Address of the track

• LOOP: If the track will loop on end ( .MUSIC_LOOP ) or not ( .MUSIC_NO_LOOP )

VM_MUSIC_STOP

Stops playing of music track

VM_MUSIC_MUTE

Mutes/unmutes mysic channels.

• MASK: Mute Mask. The 4 lower bits represent the 4 audio channels.

MASK Channel 1 Channel 2 Channel 3 Channel 4

0b0000 Muted Muted Muted Muted

0b0001 Muted Muted Muted Not Muted

0b0010 Muted Muted Not Muted Muted

0b0011 Muted Muted Not Muted Not Muted

0b0100 Muted Not Muted Muted Muted

0b0101 Muted Not Muted Muted Not Muted

0b0110 Muted Not Muted Not Muted Muted

VM_MUSIC_PLAY TRACK_BANK, TRACK, LOOP

VM_MUSIC_STOP

VM_MUSIC_MUTE MASK



MASK Channel 1 Channel 2 Channel 3 Channel 4

0b0111 Muted Not Muted Not Muted Not Muted

0b1000 Not Muted Muted Muted Muted

0b1001 Not Muted Muted Muted Not Muted

0b1010 Not Muted Muted Not Muted Muted

0b1011 Not Muted Muted Not Muted Not Muted

0b1100 Not Muted Not Muted Muted Muted

0b1101 Not Muted Not Muted Muted Not Muted

0b1110 Not Muted Not Muted Not Muted Muted

0b1111 Not Muted Not Muted Not Muted Not Muted

VM_SOUND_MASTERVOL

Sets master volume

• VOL: The volume value

VM_MUSIC_ROUTINE

Attach script to music event

• ROUTINE: The routine Id. An integer between 0 and 3.

• BANK: Bank number of the routine

• ADDR: Address of the routine

VM_SFX_PLAY

VM_SOUND_MASTERVOL VOL

VM_MUSIC_ROUTINE ROUTINE, BANK, ADDR

VM_SFX_PLAY BANK, ADDR, MASK, PRIO



Play a sound effect asset

• BANK: Bank number of the effect

• ADDR: Address of the effect

• MASK: Mute mask of the effect

• PRIO: Priority of the sound effect. Effects with higher priority will cancel the ones with less priority:

.SFX_PRIORITY_MINIMAL - Minmium priority for playback

.SFX_PRIORITY_NORMAL - Normal priority for playback0

.SFX_PRIORITY_HIGH - High priority for playback

VM_MUSIC_SETPOS

Sets playback position for the current song.

• PATTERN: - The pattern to set the song position to

• ROW: - The row to set the song position to

Projectiles

VM_PROJECTILE_LAUNCH

VM_PROJECTILE_LOAD_TYPE

RTC

VM_RTC_LATCH

Latch RTC value for access

VM_RTC_GET

Read RTC value

• IDX: Target variable

• WHAT: RTC value to be read

VM_MUSIC_SETPOS PATTERN, ROW

VM_PROJECTILE_LAUNCH TYPE, IDX

VM_PROJECTILE_LOAD_TYPE TYPE, BANK, ADDR

VM_RTC_LATCH

VM_RTC_GET IDX, WHAT



.RTC_SECONDS - Seconds

.RTC_MINUTES - Minutes

.RTC_HOURS - Hours

.RTC_DAYS - Days

VM_RTC_SET

Write RTC value

• IDX: Source variable

• WHAT: RTC value to be written

.RTC_SECONDS - Seconds

.RTC_MINUTES - Minutes

.RTC_HOURS - Hours

.RTC_DAYS - Days

VM_RTC_START

Start or stop RTC

• START: Start or stop flag

.RTC_STOP - stop RTC

.RTC_START - start RTC

Rumble

VM_RUMBLE

Enables or disables rumble on a cart that has that function

• ENABLE: 1 - enable or 0 - disable

Scenes

VM_SCENE_PUSH

Pushes the current scene to the scene stack.

VM_RTC_SET IDX, WHAT

VM_RTC_START START

VM_RUMBLE ENABLE

VM_SCENE_PUSH



VM_SCENE_POP

Removes the last scene from the scene stack an loads it.

VM_SCENE_POP_ALL

Removes all scenes from the scene stack and loads the first one.

VM_SCENE_STACK_RESET

Removes all the scenes from the scene stack.

Screen Fade

VM_FADE

VM_FADE_IN

VM_FADE_OUT

SGB

VM_SGB_TRANSFER

Transfers SGB packet(s). Data of variable length is placed after this instruction, for example:

VM_SCENE_POP

VM_SCENE_POP_ALL

VM_SCENE_STACK_RESET

VM_FADE FLAGS

VM_FADE_IN IS_MODAL

VM_FADE_OUT IS_MODAL

VM_SGB_TRANSFER

VM_SGB_TRANSFER
.db ((0x04 &lt;&lt; 3) | 1), 1, 0x07, ((0x01 &lt;&lt; 4) | (0x02 &lt;&lt; 2) | 0x03), 5,5,
10,10,  0, 0, 0, 0, 0, 0, 0, 0 ; ATTR_BLK packet



SGB packet size is a multiple of 16 bytes and encoded in the packet itself.

SIO

VM_SIO_SET_MODE

VM_SIO_EXCHANGE

Text Sound

VM_SET_TEXT_SOUND

Set the sound effect for the text output

• BANK: Bank number of the effect

• ADDR: Address of the effect

• MASK: Mute mask of the effect

Timer

VM_TIMER_PREPARE

Load script into timer context

VM_TIMER_SET

Start a timer calling once every INTERVAL * 16 frames

VM_TIMER_STOP

Stop a timer

VM_SIO_SET_MODE MODE

VM_SIO_EXCHANGE SOUR, DEST, SIZE

VM_SET_TEXT_SOUND BANK, ADDR, MASK

VM_TIMER_PREPARE TIMER, BANK, ADDR

VM_TIMER_SET TIMER, INTERVAL

VM_TIMER_STOP TIMER



VM_TIMER_RESET

Reset a timers countdown to 0

UI

VM_LOAD_TEXT

Loads a text in memory

• NARGS: Amount of arguments that are passed before the null-terminated string

The text string is defined using the .asciz command:

Displaying variables:

The following format specifiers allow to render variables as part of the text:

• %d Render a variable value

• %Dn Render a variable value with n length

• %c Render a character based on the variable value

The variables need to be defined before the .asciz call using .dw followed by a list of N variables in the order they'll be

rendered.

Escape Sequences:

The text string can contain escape sequence that modify the behavior or apparence of the text.

• \001\x Sets the text speed for the next characters in the current text. x is a value between 1 and 8 that represents the

number of frames between the render of a character using 2^(x-2) .

• \002\x Sets the text font

• \003\x\y Sets the position for the next character

• \004\x\y Sets the position for the next character relative to the last character

• \005\ TBD

• \006\mask Wait for input to continue to the next character.

VM_TIMER_RESET TIMER

VM_LOAD_TEXT NARGS

VM_LOAD_TEXT   0
.asciz "text to render"

VM_LOAD_TEXT   3
.dw VAR_0, VAR_1, VAR_1
.asciz "Var 0 is %d, Var 1 is %d, Var 2 is %d"



• \007\n Inverts the colors of the following characters.

• \n Next line

• \r Scroll text one line up

VM_DISPLAY_TEXT_EX

Renders the text in the defined layer (overlay, by default)

• OPTIONS: Text rendering options:

.DISPLAY_DEFAULT - default behavior

.DISPLAY_PRESERVE_POS - preserve text position

• START_TILE: Tile number within the text rendering area to be rendered from; use .TEXT_TILE_CONTINUE to proceed

from the current position

VM_DISPLAY_TEXT

Renders the text in the defined layer (obsolete)

VM_SWITCH_TEXT_LAYER

Changes the LAYER where the text will be rendered.

• LAYER:

.TEXT_LAYER_BKG - Render text in the background layer

.TEXT_LAYER_WIN - Render text in the overlay layer

VM_OVERLAY_SETPOS

Set position of the overlay window in tiles

• X: X-coordinate of the overlay window in tiles

• Y: Y-coordinate of the overlay window in tiles

VM_OVERLAY_HIDE

Hide the overlay window

VM_DISPLAY_TEXT_EX OPTIONS, START_TILE

VM_DISPLAY_TEXT

VM_SWITCH_TEXT_LAYER LAYER

VM_OVERLAY_SETPOS X, Y

VM_OVERLAY_HIDE



VM_OVERLAY_WAIT

Wait for the UI operation(s) completion

• IS_MODAL: indicates whether the operation is modal: .UI_MODAL, or not: .UI_NONMODAL

• WAIT_FLAGS: bit field, set of events to be waited for:

.UI_WAIT_NONE - No wait

.UI_WAIT_WINDOW - Wait until the window moved to its final position

.UI_WAIT_TEXT - Wait until all the text finished rendering

.UI_WAIT_BTN_A - Wait until "A" is pressed

.UI_WAIT_BTN_B - Wait until "B" is pressed

.UI_WAIT_BTN_ANY - Wait until any button is pressed

VM_OVERLAY_MOVE_TO

Animated move of the overlay window to the new position

• X: X-coordinate of the new position

• Y: Y-coordinate of the new position

• SPEED: speed of the movement:

.OVERLAY_IN_SPEED - default speed for appearing of the overlay

.OVERLAY_OUT_SPEED - default speed for disappearing of the overlay

.OVERLAY_SPEED_INSTANT - instant movement

VM_OVERLAY_SHOW

Show the overlay window

• X: X-coordinate of the new position

• Y: Y-coordinate of the new position

• COLOR: initial color of the overlay window:

.UI_COLOR_BLACK - black overlay window

.UI_COLOR_WHITE - white overlay window

• OPTIONS: display options:

.UI_DRAW_FRAME - draw overlay frame

.UI_AUTO_SCROLL - set automatic text scroll area; text will be scrolled up when printing more lines than the overlay height.

VM_OVERLAY_WAIT IS_MODAL, WAIT_FLAGS

VM_OVERLAY_MOVE_TO X, Y, SPEED

VM_OVERLAY_SHOW X, Y, COLOR, OPTIONS



VM_OVERLAY_CLEAR

Clear the rectangle area of the overlay window

• X: X-coordinate in tiles of the upper left corner

• Y: Y-coordinate in tiles of the upper left corner

• W: Width in tiles of the rectangle area

• H: Height in tiles of the rectangle area

• COLOR: initial color of the overlay window:

.UI_COLOR_BLACK - black overlay window

.UI_COLOR_WHITE - white overlay window

• OPTIONS: display options:

.UI_DRAW_FRAME - draw overlay frame

.UI_AUTO_SCROLL - set automatic text scroll area; text will be scrolled up when printing more lines than the overlay height.

.MENUITEM

VM_CHOICE

Execute menu

• IDX: Variable that receive the result of the menu execution

• OPTIONS: bit field, set of the possible menu options:

.UI_MENU_STANDARD - default menu behavior

.UI_MENU_LAST_0 - last item return result of 0

.UI_MENU_CANCEL_B - B button cancels the menu execution

.UI_MENU_SET_START - if set IDX may contain the initial item index

• COUNT: number of menu items

instruction must be followed by the COUNT of .MENUITEM definitions:

.MENUITEM X, Y, iL, iR, iU, iD

where:

X - X-coordinate of the cursor pointer in tiles

Y - Y-coordinate of the cursor pointer in tiles

iL - menu item number where the cursor must move when you press LEFT

iR - menu item number where the cursor must move when you press RIGHT

iU - menu item number where the cursor must move when you press UP

iD - menu item number where the cursor must move when you press DOWN

VM_OVERLAY_CLEAR X, Y, W, H, COLOR, OPTIONS

.MENUITEM X, Y, iL, iR, iU, iD

VM_CHOICE IDX, OPTIONS, COUNT



VM_SET_FONT

Sets active font

• FONT_INDEX: the index of the font to be activated

VM_SET_PRINT_DIR

Sets print direction

• DIRECTION: direction of the text rendering:

.UI_PRINT_LEFTTORIGHT - text is rendered from left to right (left justify)

.UI_PRINT_RIGHTTOLEFT - text is rendered from right to left (right justify)

VM_OVERLAY_SET_SUBMAP_EX

Copies rectange area of the background map onto the overlay window

• PARAMS_IDX: points to the beginning of the pseudo-structure that contains these members:

x - X-coordinate within the overlay window in tiles

y - Y-coordinate tithin the overlay window in tiles

w - Width of the copied area in tiles

h - Height of the copied area in tiles

scene_x - X-Coordinate within the background map in tiles

scene_y - Y-Coordinate within the background map in tiles

VM_OVERLAY_SCROLL

Scrolls the rectangle area

• X: X-coordinate of the upper left corner in tiles

• Y: Y-coordinate of the upper left corner in tiles

• W: Width of the area in tiles

• H: Height of the area in tiles

• COLOR: Color of the empty row of tiles that appear at the bottom of the scroll area

VM_OVERLAY_SET_SCROLL

VM_SET_FONT FONT_INDEX

VM_SET_PRINT_DIR DIRECTION

VM_OVERLAY_SET_SUBMAP_EX PARAMS_IDX

VM_OVERLAY_SCROLL X, Y, W, H, COLOR

VM_OVERLAY_SET_SCROLL X, Y, W, H, COLOR



Defines the scroll area for the overlay. When the text overflows that area it'll scroll up by 1 row

• X: X-coordinate of the upper left corner in tiles

• Y: Y-coordinate of the upper left corner in tiles

• W: Width of the area in tiles

• H: Height of the area in tiles

• COLOR: Color of the empty row of tiles that appear at the bottom of the scroll area

VM_OVERLAY_SET_SUBMAP

Copies a rectange area of tiles from the scene background

• X: X-coordinate within the overlay window of the upper left corner in tiles

• Y: Y-coordinate within the overlay window of the upper left corner in tiles

• W: Width of the area in tiles

• H: Height of the area in tiles

• SX: X-coordinate within the level background map

• SY: Y-coordinate within the level background map

VM_OVERLAY_SET_SUBMAP X, Y, W, H, SX, SY



Building Your Game

Building Your Game

Play
Clicking the Play button in the top right of the Project Editor window will start a build of your game and once complete will open a

new window where you can play your game. See Keyboard Shortcuts for details on how to play your game in the Play Window.

Build Terminal
Clicking the Project View Button and selecting Build & Run will take you to the Build Terminal where you can see a log of the

project build. You also get to this screen by clicking the Play button while a build is taking place. This screen will show you if

there's any errors in your build to help you correct them.

Build as ROM
Clicking the Export button and selecting Export ROM will build your game and create a ROM file in your project's build folder as

$PROJECT_ROOT/build/rom/game.gb . You can play this ROM file in any compatible emulator such as OpenEMU or KiGB.

Build and deploy for Web
Clicking the Export button and selecting Export Web will build your game and create a HTML5 web build in the folder

$PROJECT_ROOT/build/web . You can upload this folder to any web server and navigate to the index.html file to play your

game in a web browser. If you use a mobile or tablet web browser the game will also include touch controls.

If you zip the build/web folder you can upload it to Itch.io as a HTML game. In this case the recommended viewport size to use

is 480px x 432px .

Build for Pocket
Clicking the Export button and selecting Export Pocket will build your game as a .pocket file for use on Analogue Pocket

devices.

To play your .pocket game:

• Create a folder at the root of a MicroSD card called GB Studio .

• Copy the .pocket file into the GB Studio folder

• Insert the MicroSD card into your Pocket device.

• From the Pocket menu choose Tools / GB Studio / Play Creations and select your file from the list.

Troubleshooting
On macOS if you're having trouble building or running your game you may also need to install Apple's Command Line Tools by

opening Applications/Terminal.app and entering the following command.

On Windows you may need to whitelist the application in your Anti Virus software to perform a build.

xcode-select --install

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/getting-started/keyboard-shortcuts
https://openemu.org/
http://kigb.emuunlim.com/downloads.htm
https://itch.io/
https://www.analogue.co/pocket


Extending GB Studio

Extending GB Studio

📄📄 Engine Eject

Engine Eject copies the GBVM game engine that GB Studio uses into a folder in your project, named assets/engine. You can edit these source files to your liking using an IDE to hav…

📄📄 Plugins

Plugins are a way to extend GB Studio and share reusable assets, create custom scripting events and even build engine modifications.

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/extending-gbstudio/engine-eject
https://www.gbstudio.dev/docs/extending-gbstudio/plugins


Extending GB Studio Engine Eject

Engine Eject
Engine Eject copies the GBVM game engine that GB Studio uses into a folder in your project, named assets/engine . You can

edit these source files to your liking using an IDE to have more control over how your GB Studio game is built. This feature is only

recomended for developers familiar with GBDK.

To use Engine Eject, click on Game at the top of the GB Studio window and navigate to the Advanced tab to show the Engine

Eject button.

After clicking Eject your project will gain a new folder named /engine with the subfolders /include and /src .

Reverting Files
To revert any GBDK file back to its GB Studio default, delete it from the assets/engine folder. Deleting the whole assets/

engine folder ensures that all GBDK code reverts back to the GB Studio defaults. You can also do this by pressing Engine Eject

again, which will overwrite your assets/engine folder with the GB Studio defaults.

Compile Errors
If you have bugged or incompatible files in the /engine folder, GB Studio will not be able to build your game. Error messages

can be found in the Build & Run window.

The error message will often explain which files have problems and point you to the line number where the problem was found, for

example this error is showing that line 77 of src/core/actor.c is using a variable that has not yet been defined:

These errors will not be caused by missing files. GB Studio refers to its default engine in place of any missing assets/engine

files. Fixing or removing the files that caused the error will allow your game to build and run again.

Compiling: src/core/actor.c
src/core/actor.c:77: error 20: Undefined identifier 'emote_offsets'
src/core/actor.c:77: error 22: Array or pointer required for '[]' operation
src/core/actor.c:77: error 47: indirections to different types assignment

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/extending-gb-studio
https://github.com/chrismaltby/gbvm


Extending GB Studio Plugins

Plugins
Plugins are a way to extend GB Studio and share reusable assets, create custom scripting events and even build engine

modifications.

Installing Plugins
To use plugins you must first create a plugins folder within your project in the same folder as your .gbsproj file. You can then

place any plugins you have within this folder.

The structure should look something like this:

You may need to close and reopen your project after adding plugins for the changes to appear.

Asset Plugins
The simplest kind of plugin you can make for GB Studio is an asset plugin, these allow you to share sprites, backgrounds, fonts,

sounds, anything that is normally placed in the assets folder.

To create an asset plugin first create a new folder within your plugins folder with the name you want to give your plugin (Above

we used assetPlugin as the name). Within that folder you can create any of the normal project asset folders (such as

backgrounds ) and place files within it. These assets will appear as normal in your project but are now easier to package up and

share between projects or with others.

Download Example Asset Plugin

Script Event Plugins
These plugins allow you to create new script events that will appear anywhere you use Scripting Events.

To create a script event plugin first create a new folder within your plugins folder with the name you want to give your plugin

(Such as myPlugin ). Within that folder create an events folder, and within that you can place the Javascript definition of your

events. See the GB Studio source for examples of how these files should be structured and how they generate GBVM output.

Note your event plugin Javascript filename MUST begin with event e.g. eventMyFirstEvent.js .

Download Example Script Event Plugin

https://www.gbstudio.dev/
https://www.gbstudio.dev/docs/category/extending-gb-studio
https://www.gbstudio.dev/assets/files/assetExamplePlugin-2e9b5813b86a5af979212d8cca8ee898.zip
https://www.gbstudio.dev/docs/scripting
https://github.com/chrismaltby/gb-studio/tree/develop/src/lib/events
https://www.gbstudio.dev/docs/scripting/gbvm
https://www.gbstudio.dev/assets/files/eventExamplePlugin-3effc03cf3d7b456790b56ea43190275.zip


Engine Plugins
An engine plugin allows similar functionality to ejecting your engine but allows just changing single files or you can use it to add

completely new files to the engine.

Engine plugins contain an engine folder which follows the same structure as an ejected game engine. Below you can download

an example plugin that adds a new game engine function that causes the screen to flash (only when Color mode is disabled) and

also includes a script event plugin to allow calling the new function.

Download Example Script Event Plugin

https://www.gbstudio.dev/docs/extending-gbstudio/engine-eject
https://www.gbstudio.dev/assets/files/engineExamplePlugin-7822f279164bfa50b28a3d9236da6206.zip


Migration Guide

Migration Guide
GB Studio 3.0 introduces a number of changes to previous versions in an effort to improve and future proof the game engine and

project format. While we try our best to automate as much of the migration as possible there are a few instances where it was not

possible to do that this time and you may need to make some changes to your project if you wish to migrate from previous GB

Studio versions.

Actors

• Actors will now always animate while stationary (allowing idle animations), which may cause issues when you want to step

through animations manually (like checkboxes in the GB Studio 2.0 sample game menu scenes), if you wish to control an

animation manually as before, set the Actor’s animation speed to “None”. You should also consider using the new Sprite

Editor and Animation States as you can accomplish similar goals with a lot more flexibility.

• If you have many actors in a scene that use Actor Set Sprite Sheet events you may find your sprite tile counter has

become too high. This is because in GB Studio 3.0 we made a different tradeoff in how to handle this situation, previously all

scripted sprite sheets needed to be loaded into memory as the scene initialised limiting how many unique sprites could be

used in a single scene, instead we now reserve memory for every actor that uses scripted sprite sheets but you can apply

as many sprite sheets as you want to a single actor. The recommended solution is to replace switching sprite sheets with

using Animation States instead. For an example of a scene affected by this compare the scene "Space Battle" from the GBC

Sample Project in GB Studio 2 with the version in GB Studio 3, where ship explosion animations are now part of the enemy

sprite animations rather than a separate sprite sheet.

• If you are migrating from GB Studio 2 you may notice the per scene actor limits is now reduced to 20 actors per scene, this

may increase in future releases. Depending on how you were using actors you may be able to use larger sprites to achieve

the same effect.

Sprites

• The default player sprite is now set per scene type (Top Down 2D, Platformer, etc), so there is no need to switch to a

different player sprite manually anymore in the scene init script, unless you wish to do so conditionally. When migrating a

project using multiple scene types you will need to set the default player sprite for each scene type from the Settings View.

• Collision bounding boxes can now be configured per sprite. Previously all actors had a collision box of 16px x 16px and

the player had a collision box of 8px x 16px . When migrating your project we set the spritesheet you set as the player

default to use a 8px x 16px collision box to maintain compatibility with previous versions but if you ever changed the

player sprite though scripts you may also need to set the collision boxes on these sprites manually using the Sprite Editor.

• Platformer player sprites now have a custom jump and climb animation which you will need to configure. To use these go

into the Sprite Editor, select your platform player sprite, and in the right hand sidebar set the animation type to “Platform

Player” which adds a few more animations you can define for the sprite, see Animation Settings for more information.

https://www.gbstudio.dev/


Scenes
• Ladder tiles now snap the player sprite to the center of the tile while climbing. If you are using ladders in your game, make

sure to test them as you may need to reposition the collision tiles to match the new alignment.

Save / Load
• When loading a save game, the game engine now continues any scripts that were previously running. This means that if you

included a message such as “It is now safe to turn off your system.” immediately after the save it will also be shown when

loading that game. The save data event now use an On Save callback, this will only be called when you save, and not when

you load the game back. If you were previously displaying a message after saving you will likely need to move it into the On

Save script. See the save points in the latest example projects for how to implement this.



Settings

Settings
Clicking the Project View Button and selecting Settings will take you to a list of your project's settings.

GB Color Options
GB Studio has support for GB Color when your game is run on compatible hardware or emulators. Click the Enable Color

Mode checkbox to enable.

Once color mode is enabled you can select up to 8 Default Background Palettes and 8 Default Sprite Palettes, these are the

palettes that every new scene in your game will use unless you specifically override them. See Colorizing a Scene for how to use

background palettes.

Super GB Options
To enable support for Super GB click the Enable Super GB Mode checkbox.

https://www.gbstudio.dev/


This mode will allow you to set a custom 256px×224px border image and color palette to use when your game is run on

compatible hardware or emulators.

The first time you build your game after enabling this mode a default border image will be copied to your project in assets/sgb/

border.png , edit this image to replace the border with your own.

Default Player Sprites
Each Scene Type can have a different player sprite sheet, use this section to replace the default spritesheet that will be used for

each type. You can override the sprite sheet used for individual scenes by editing the scene's properties or by using scripts, see

The Player.

UI Elements & Fonts
Use this section to view the frame image used for dialogue windows in your game, the cursor image used in menus and to select

the default font for your project. Clicking the cursor or frame image will open them in your selected image editor, alternatively you

can find the files in your project's assets/ui folder.



Fonts can be found in assets/fonts and consist of a .png image and .json definition file.

You can create variable width fonts (with characters less than 8px wide) by filling the right edge of your font's characters with

magenta #ff00ff like the example below.

By default fonts use an ASCII mapping with character code 32 (Space) mapping to the top left character in your font. You can

provide a custom mapping by editing your font's .json file as follows.

In this example using a ヲ character will now display character 166 from your .png .

{
"name": "Japanese Font",
"mapping": {

"ヲ": 166,
"ァ": 167,
"ィ": 168

}
}



Please note that as the first 32 ASCII characters are not included in your image you need to account for this in your mapping, for

example if you wanted to map the character ? to the second tile in your .png you would set the mapping to be "?": 33

Music Format
The music format chooses which music engine to use in your game, this in turn determines the format of the music files supported

in your project.

The recommended setting is UGE (hUGEDriver) ( .uge files), as this enables you to use the inbuilt music editor, though if you

have created a project in GB Studio 2.0 or below you will need to keep this setting as MOD (GBT Player) ( .mod files) to

maintain compatibility with your existing music files.

See Music for more information.

Engine Settings
The GB Studio game engine has a number of custom settings split by scene type that you can change to adjust the feel of your

game, for example to reduce the gravity in Platformer scenes or to make Top Down 2D scenes use a 16px grid.

To reset to the original values you can use the Restore Default button.

Controls
The Controls section allows you to override the default controls used when playing your game from a web build and the Play

Window.

To edit the controls for a button click on the input box and while the input is highlighted type the key you wish to assign. To remove

all the assigned keys click the input and then press the Backspace key on your keyboard.

https://www.gbstudio.dev/docs/assets/music


To reset to the original controls you can use the Restore Default button.

Cartridge Type
The Cartridge Type section allows you to choose which Memory Bank Controller you want to use and if you want to enable

Batteryless Saving for compatible Flash Carts.

If you don't know what these settings mean it's best to keep this as the default of MBC5, with Batteryless disabled which you can

do by using the Restore Default button.

Custom HTML Header
You can use the Custom HTML Header section to add content to the HTML <head> when generating a web build of your game.

You can use this to add any custom CSS or Javascript you want to the web build HTML page.


	Installation
	Windows
	macOS
	Ubuntu / Debian-based Linux
	Fedora / RPM-based Linux

	Getting Started
	New Project

	Keyboard Shortcuts
	Play Window
	Navigating The Menus
	Game World
	Drawing Mode
	Collision Types
	Colorize Palettes
	Music Editor
	Tracker
	Piano roll


	Saving and Loading
	Saving
	Loading
	Version Control
	Backups

	Project Editor
	Editor Tools
	Project Views

	Scenes
	Adding a Scene
	Scene Properties
	Parallax Mode
	Scripting
	Adding Collision to a Scene
	Colorizing a Scene
	Scene Limits
	Actor Limits
	Sprite Tile Limits
	Trigger Limits


	The Player
	Start Position
	Default Sprite Sheet
	Scripting

	Actors
	Adding an Actor
	Actor Properties
	Pin to Screen
	Collision Groups

	Scripting
	Limits

	Triggers
	Adding a Trigger
	Scripting

	Assets
	Community Assets

	Sprites
	Simple Sprites
	Static sprites
	Animated sprites
	Actor
	Animated Actor

	Sprite Editor
	Composition of a Sprite
	Animation Settings
	Animation States
	Frame Canvas
	Onion Skin
	Deleting Tiles and Frames

	Image Requirements

	Backgrounds
	Color Requirements
	Size Requirements
	Tile Requirements

	Music
	Music Editor
	Getting Started
	Structure of a Song

	Piano Roll
	Using the Piano Roll

	Tracker
	Using the Tracker

	Pattern Navigator
	Instruments
	Duty Instruments
	Wave Instruments
	Noise Instruments

	Effects
	Keyboard Shortcuts

	MOD Music
	Requirements
	Resources
	Getting Started
	GBT Player's Channel Limitations
	Volume Limitations
	Unique Volume Settings for Channels 1, 2 and 4:
	Unique Volume Settings for Channel 3:

	Volume Persistence
	Instruments
	Effects
	Speed Table

	Tricks and Tips
	1. High Speed
	2. One channel echoes
	3. Quick volume envelopes

	Frequently Asked Questions
	Tips

	Sound Effects
	UI Elements
	frame.png
	cursor.png
	Requirements
	Fonts
	Emotes
	Avatars

	Scripting Events
	Adding Events
	Favourite Events
	Copy and Paste Events
	Types of Scripts
	Scene Scripts
	Actor Scripts
	Trigger Scripts


	Event Glossary
	📄️ Actor
	📄️ Camera
	📄️ Color
	📄️ Control Flow
	📄️ Dialogue & Menus
	📄️ Engine Fields
	📄️ Input
	📄️ Math
	📄️ Miscellaneous
	📄️ Music & Sound Effects
	📄️ Save Data
	📄️ Scene
	📄️ Screen
	📄️ Timer
	📄️ Variables

	Actor
	Activate Actor
	Actor Move Cancel
	Actor Move Relative
	Actor Move To
	Deactivate Actor
	Hide Actor
	Hide All Sprites
	If Actor At Position
	If Actor Distance From Actor
	If Actor Facing Direction
	If Actor Relative To Actor
	Launch Projectile
	Player Bounce
	Push Actor Away From Player
	Set Actor Animation Frame
	Set Actor Animation Speed
	Set Actor Animation State
	Set Actor Collisions Disable
	Set Actor Collisions Enable
	Set Actor Direction
	Set Actor Movement Speed
	Set Actor Position
	Set Actor Relative Position
	Set Actor Sprite Sheet
	Set Player Sprite Sheet
	Show Actor
	Show All Sprites
	Show Emote Bubble
	Start Actor's "On Update" Script
	Stop Actor's "On Update" Script
	Store Actor Direction In Variable
	Store Actor Position In Variables

	Camera
	Camera Lock To Player
	Camera Move To
	Camera Shake
	Fade Screen In
	Fade Screen Out

	Color
	If Color Mode Is Available
	If GBA Mode Is Available
	If Super GB Mode Is Available
	Set Background Palettes
	Set Emote Palette
	Set Sprite Palettes
	Set UI Palette

	Control Flow
	Call Script
	If Actor At Position
	If Actor Distance From Actor
	If Actor Facing Direction
	If Actor Relative To Actor
	If Color Mode Is Available
	If Game Data Saved
	If GBA Mode Is Available
	If Joypad Input Held
	If Math Expression
	If Super GB Mode Is Available
	If Variable Compare With Value
	If Variable Compare With Variable
	If Variable Has Flag
	If Variable Is 'False'
	If Variable Is 'True'
	Loop
	Loop For
	Loop While
	Stop Script
	Switch

	Dialogue & Menus
	Display Dialogue
	Display Menu
	Display Multiple Choice
	Set Text Animation Speed

	Engine Fields
	Engine Field Update
	Store Engine Field In Variable

	Input
	Attach Script To Button
	If Joypad Input Held
	Pause Script Until Input Pressed
	Remove Button Script

	Math
	Evaluate Math Expression
	If Math Expression
	Math Functions
	Seed Random Number Generator

	Miscellaneous
	Comment
	Event Group
	GBVM Script
	Link: Close
	Link: Host
	Link: Join
	Link: Transfer

	Music & Sound Effects
	Play Music Track
	Play Sound Effect
	Set Music Routine
	Stop Music

	Save Data
	Game Data Load
	Game Data Remove
	Game Data Save
	If Game Data Saved
	Store Variable from Game Data In Variable

	Scene
	Change Scene
	Remove All From Scene Stack
	Restore First Scene From Stack
	Restore Previous Scene From Stack
	Store Current Scene On Stack

	Screen
	Fade Screen In
	Fade Screen Out
	Hide Overlay
	Overlay Move To
	Show Overlay

	Timer
	Attach Timer Script
	Idle
	Remove Timer Script
	Restart Timer
	Wait

	Variables
	Evaluate Math Expression
	If Variable Compare With Value
	If Variable Compare With Variable
	Math Functions
	Reset All Variables To 'False'
	Seed Random Number Generator
	Store Actor Position In Variables
	Store Engine Field In Variable
	Store Variable from Game Data In Variable
	Variable Decrement By 1
	Variable Flags Add
	Variable Flags Clear
	Variable Flags Set
	Variable Increment By 1
	Variable Set To 'False'
	Variable Set To 'True'
	Variable Set To Value

	Custom Scripts
	Parameters
	Passing by Reference or Value
	Calling a Custom Script

	Math Expressions
	GBVM
	Learning GBVM

	GBVM Operations
	Core
	VM_STOP
	VM_PUSH_CONST
	VM_POP
	VM_CALL
	VM_RET
	VM_RET_N
	VM_GET_FAR
	VM_LOOP
	.CASE
	VM_SWITCH
	VM_JUMP
	VM_CALL_FAR
	VM_RET_FAR
	VM_RET_FAR_N
	VM_INVOKE
	VM_BEGINTHREAD
	VM_IF
	VM_PUSH_VALUE_IND
	VM_PUSH_VALUE
	VM_RESERVE
	VM_SET
	VM_SET_CONST
	VM_RPN
	.R_INT8
	.R_INT16
	.R_REF
	.R_REF_IND
	.R_REF_SET
	.R_OPERATOR
	.R_STOP
	VM_JOIN
	VM_TERMINATE
	VM_IDLE
	VM_GET_TLOCAL
	VM_IF_CONST
	VM_GET_UINT8
	VM_GET_INT8
	VM_GET_INT16
	VM_SET_UINT8
	VM_SET_INT8
	VM_SET_INT16
	VM_SET_CONST_INT8
	VM_SET_CONST_UINT8
	VM_SET_CONST_INT16
	VM_INIT_RNG
	VM_RANDOMIZE
	VM_RAND
	VM_LOCK
	VM_UNLOCK
	VM_RAISE
	VM_SET_INDIRECT
	VM_GET_INDIRECT
	VM_TEST_TERMINATE
	VM_POLL_LOADED
	VM_PUSH_REFERENCE
	VM_CALL_NATIVE
	VM_MEMSET
	VM_MEMCPY

	Actor
	VM_ACTOR_MOVE_TO
	VM_ACTOR_MOVE_CANCEL
	VM_ACTOR_ACTIVATE
	VM_ACTOR_SET_DIR
	VM_ACTOR_DEACTIVATE
	VM_ACTOR_SET_ANIM
	VM_ACTOR_SET_POS
	VM_ACTOR_EMOTE
	VM_ACTOR_SET_BOUNDS
	VM_ACTOR_SET_SPRITESHEET
	VM_ACTOR_SET_SPRITESHEET_BY_REF
	VM_ACTOR_REPLACE_TILE
	VM_ACTOR_GET_POS
	VM_ACTOR_GET_DIR
	VM_ACTOR_GET_ANGLE
	VM_ACTOR_SET_ANIM_TICK
	VM_ACTOR_SET_MOVE_SPEED
	VM_ACTOR_SET_FLAGS
	VM_ACTOR_SET_HIDDEN
	VM_ACTOR_SET_COLL_ENABLED
	VM_ACTOR_TERMINATE_UPDATE
	VM_ACTOR_SET_ANIM_FRAME
	VM_ACTOR_GET_ANIM_FRAME
	VM_ACTOR_SET_ANIM_SET

	Camera
	VM_CAMERA_MOVE_TO
	VM_CAMERA_SET_POS

	Color
	.DMG_PAL
	.CGB_PAL
	VM_LOAD_PALETTE

	Game Boy
	VM_LOAD_TILES
	VM_LOAD_TILESET
	VM_SET_SPRITE_VISIBLE
	VM_SHOW_SPRITES
	VM_HIDE_SPRITES
	VM_INPUT_WAIT
	VM_INPUT_ATTACH
	VM_INPUT_GET
	VM_CONTEXT_PREPARE
	VM_OVERLAY_SET_MAP
	VM_GET_TILE_XY
	VM_REPLACE_TILE
	VM_POLL
	VM_SET_SPRITE_MODE
	VM_REPLACE_TILE_XY
	VM_INPUT_DETACH

	GB Printer
	VM_PRINTER_DETECT
	VM_PRINT_OVERLAY

	Load and Save
	.SAVE_SLOT
	VM_SAVE_PEEK
	VM_SAVE_CLEAR

	Math
	VM_SIN_SCALE
	VM_COS_SCALE

	Music and Sound
	VM_MUSIC_PLAY
	VM_MUSIC_STOP
	VM_MUSIC_MUTE
	VM_SOUND_MASTERVOL
	VM_MUSIC_ROUTINE
	VM_SFX_PLAY
	VM_MUSIC_SETPOS

	Projectiles
	VM_PROJECTILE_LAUNCH
	VM_PROJECTILE_LOAD_TYPE

	RTC
	VM_RTC_LATCH
	VM_RTC_GET
	VM_RTC_SET
	VM_RTC_START

	Rumble
	VM_RUMBLE

	Scenes
	VM_SCENE_PUSH
	VM_SCENE_POP
	VM_SCENE_POP_ALL
	VM_SCENE_STACK_RESET

	Screen Fade
	VM_FADE
	VM_FADE_IN
	VM_FADE_OUT

	SGB
	VM_SGB_TRANSFER

	SIO
	VM_SIO_SET_MODE
	VM_SIO_EXCHANGE

	Text Sound
	VM_SET_TEXT_SOUND

	Timer
	VM_TIMER_PREPARE
	VM_TIMER_SET
	VM_TIMER_STOP
	VM_TIMER_RESET

	UI
	VM_LOAD_TEXT
	Displaying variables:
	Escape Sequences:

	VM_DISPLAY_TEXT_EX
	VM_DISPLAY_TEXT
	VM_SWITCH_TEXT_LAYER
	VM_OVERLAY_SETPOS
	VM_OVERLAY_HIDE
	VM_OVERLAY_WAIT
	VM_OVERLAY_MOVE_TO
	VM_OVERLAY_SHOW
	VM_OVERLAY_CLEAR
	.MENUITEM
	VM_CHOICE
	VM_SET_FONT
	VM_SET_PRINT_DIR
	VM_OVERLAY_SET_SUBMAP_EX
	VM_OVERLAY_SCROLL
	VM_OVERLAY_SET_SCROLL
	VM_OVERLAY_SET_SUBMAP


	Building Your Game
	Play
	Build Terminal
	Build as ROM
	Build and deploy for Web
	Build for Pocket
	Troubleshooting

	Extending GB Studio
	📄️ Engine Eject
	📄️ Plugins

	Engine Eject
	Reverting Files
	Compile Errors

	Plugins
	Installing Plugins
	Asset Plugins
	Script Event Plugins
	Engine Plugins

	Migration Guide
	Actors
	Sprites
	Scenes
	Save / Load

	Settings
	GB Color Options
	Super GB Options
	Default Player Sprites
	UI Elements & Fonts
	Music Format
	Engine Settings
	Controls
	Cartridge Type
	Custom HTML Header


